

Angle Resolved PhotoEmission Spectroscopy (ARPES) Study of $Sr_4Ru_3O_{10}$ single crystals and Intrinsic Bi_2Te_3 Topological Insulator Thin Films

Prosper Ngabonziza

16th November 2015

Acknowledgement

Beamline CASSIOPÉE

Bryan P. Doyle

Emanuela Carleschi

Alexander Brinkman

Hans Hilgenkamp

Nick de Jong

Emmanouil Frantzeskakis

Erik van Heumen

Mark S. Golden

Motivation

- Understanding the electronic structure of materials:
 - Near Fermi level Insights into the solid-state for the materials under investigation
- Interesting properties of solids are determined by electrons near Fermi level:
 - conductivity,
 - magnetoresistance,
 - superconductivity,
 - Magnetism

New material with rich Physics and Novel future technological applications:

- Transition Metal Oxides :
 - Oxide Electronics
- Topological Insulators :
 - Spintronic and quantum computation

Materials Innovation for Leading Device Revolution

http://www.mrs.org/fall-2014-plenary/

Motivation

➤ ARPES: surface sensitive tool to look into the narrow energy slice around Fermi level

Outline

u introducing angle resolved photoemission spectroscopy (ARPES)	
☐ ARPES Study on Sr ₄ Ru ₃ O ₁₀ Single Crystals with Synchrotron Light Source	

☐ ARPES Study on Intrinsic Bi₂Te₃ Topological Insulator Thin Films with Lab Light Source

Introducing angle resolved photoemission spectroscopy (ARPES) A. Experimental Considerations

In an ARPES experiment:

- 1. Incoming beam of monochromatic light (U.V or S.X.R) illuminates an atomically flat sample;
- 2. Due to the photoelectric effect, the sample emits electrons;
- 3. The kinetic energy and momentum of these electrons are measured by use of an appropriate instrument;
- 4. The data measured reflect the electronic properties of the material;
- 5. Thus, ARPES measures electronic excitations in solid → band structure.

Introducing angle resolved photoemission spectroscopy (ARPES) B. Theoretical Considerations

A. Damascelli., Physica Scripta T109, 61 (2004)

Introducing angle resolved photoemission spectroscopy (ARPES)

C. Data collection: From Energy Analyzer to 2D maps

Introducing angle resolved photoemission spectroscopy (ARPES)

General Introduction to $Sr_{n+1}Ru_nO_{3n+1}$

ARPES Experiment at Soleil

Beamline CASSIOPÉE

- \square Single crystals of $Sr_4Ru_3O_{10}$ cleaved in situ at the measurement temperature of 5 K;
- \Box kept in ultra-high vacuum conditions (~ 5x10⁻¹⁰ mbar) to avoid surface contamination;

Results: E_f crossing

☐ Six bands crossing the Fermi level, then giving rise to six Fermi Surface Sheets

P. Ngabonziza et al., Proceeding of the SA Institute of Physics (2012)

Results: Fermi Surface Mapping High Symmetry Points in the BZ

Sample-2 at 60 eV in LHP

1.0

0.5

0.0

-1.0

-0.5

0.0

K_x

0.0

1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

> Normal and topological insulators

Current challenges in the field: Bulk single crystals vs Thin films

<u>lssues</u>:

- Bulk conduction:
 - ☐ Complicate direct observation of surface effects
- Doping/counter-doping
 - Defects introduction
 - Low surface mobility

- ✓ Thin films:
 - Bulk insulating thin films (ARPES),
 - In-situ Capping,
 - Top and bottom gate,
 - Normal state transport (HBs) and JJs

- M. Veldhorst et al., Nat. Mater. 11, 417 (2012)
- M. Snelder et al., Supercond. Sci. Technol. 27, 104001 (2014)

Combined system for growth and in-situ characterizations

UHV conditions

Summary

