Optimization of Renewable Energy Processes: Projects at the Synchrotron Radiation Facility PETRA III

Oliver H. Seeck

Introduction

Energy consumption Sustainable energy resources Energy storage Advances to be achieved

Synchrotron radiation facilities PETRA III

Examples (X-Ray Imaging)

Organic Solar Cells Lithium Batteries

Worldwide Energy Consumption

Global Energy Consumption 1965-2013

age 3

Oliver Seeck | AsLS Conference 2015 | page 3

Fossil fuels create carbon dioxide gas CO₂ which is the origin of the global warming

Varieties of sustainable energy

Hydroelectric plants

- Needs a lot of land for the dam lake
- In one state already one plant can produce a significant share of electricity

Wind farms

- Can be raised delocalized or as farm
- Depend on the wind
- Needs backup power plants or energy storage (no wind)

Sun-based power plants e.g. DESERTEC project (discontinued)

Solar cells

Droogfontein (South Africa)

- Can be raised delocalized or as farms
- Depends on the sun
- Needs backup power plants or energy storage (night)

Energy storage is eminently important

Direct conversion from sun light to electrical energy

90% of solar cells are made from silicon

Efficiency of 15% - 20%

Cells are quite costly

New development: Organic solar cells

- Efficiency 10%
- Very cheap
- Easy to make
- Flexible design
- Small life time

Batteries

Laurel Mountain wind farm's storage facility West Virginia (USA)

Batteries can be used to store Electrical energy

- Batteries are still quite expensive
- Have a limited life time

Advancements of solar cell technology and Battery technology are eminently important

On molecular level

On grain size level

=> Synchrotron radiation sources

Synchrotron radiation sources

PETRA III

Flash (VUV FEL) European XFEL (coming up)

low energy sources
 < 4GeV

high energy 3rd generation sources > 4GeV

x-ray lasers

PETRA III: DESY's Brilliant Hard X-Ray Source

>particle energy:
>stored current:
>emittance:
>circumference:
># of undulators:
># of experiments:
>X-ray wavelength:
>annual operation:

6 GeV 100 mA (top-up) 1.2 nmrad 2304 m 25 (incl. canted) 50 10 – 0.05 Å 5000 h (for users)

- > built in 1978
- > rebuilt as a synchrotron radiation source starting in 2007
- > user operation since 2010
- > start of upgrade: March 2014
- > restart of user operation: April 2015
- > First beam in PETRA III extension : October 2015

Max von Laue Hall: 9 Sectors – 14 Beamlines

Run by EMBL Run by HZG

- Sector 2, 4, 6, 8, 9 host two canted ID beamlines with 2m IDs
- Sector 3, 5 and 7 one 5 m ID
- Sector 1 a 10 m ID

P01: Dynamics beamline, IXS, NRS

P02: Powder diffraction, extreme conditions P03: Micro-, nano-SAXS, WAXS

P04: Variable polarization XUV

P05: Micro-, nano-tomography

P06: Hard x-ray micro-, nanoprobe

P07: High energy materials science

P08: High-resolution diffraction P09: Resonant scattering/ diffraction P10: Coherence

applications

P11: Bioimaging/ diffraction P12: BioSAXS P13 : MX

PETRA III Extension : Two further halls

PETRA III Extension : Hall East

X-Ray beam parameters at PETRA III

Low- β sector (hor. x ver. RMS): β function 1.3x3 m² approx. 1E21 0.1% BW)] Source size $35x6 \ \mu m^2$ U32-10m 28x6 µrad² Source divergence U29-5m High- β sector: 18x3 m² β function approx. U29-2m Source size 140x6 μm² 1E20 $8x6 \mu rad^2$ UE65-5m Source divergence mm² U32-2m circular Photon flux at $\Delta E/E = 10^{-4}$ 10¹¹ ph/sec Coherent flux Brilliance [1/(s mrad² Full beam 3-10¹³ ph/sec 1E19 Extraordinary beam parameters U33-0.4m \Rightarrow X-ray beam focus can be 1E18 as small as 5 nm M. Tischer, A. Schoeps DESY Undulator Group 1E17 1000 10000 Photon Energy [eV] 5nm at P10

U23-2m

100000

Organic Solar cells @ PETRA III

The Danish Technical University runs projects on organic solar cells

Jens Wenzel Andreasen (DTU)

Multi junctions for better

coverage of the solar spectrum

Power Conversion Efficiency

- Single junction: PCE < 10% (module, ~ 3%)
- Conventional silicon: PCE ~ 20%

H. F. Dam, et al., Adv. Energy Mater. 5, 1400736 (2015).

Bulk Heterojunction

www.plasticphotovoltaics.org

- homogeneous mulitlayer (10-14 layers)
- difficulty: dissolving layers by subsequent coating
- separation layer: ZnO (40 nm thickness)

X-ray Imaging of the Tandem Solar Cell

Ptychography in 3D:

Applied to solar cell:

- verify integrity of separation layer on small sample
- field of view: 4 x 6 µm²
- 90 projections in 36 h

- Scan sample with nanofocused coherent beam
- Reconstruct absorption and refraction quantitatively

H. F. Dam, et al., Adv. Energy Mater. 5, 1400736 (2015).

H. F. Dam, et al., Adv. Energy Mater. 5, 1400736 (2015).

Battery science @ PETRA III

Tsuji, Fittschen unpublished

Shearing et al. EC 2010

New type of high-voltage chargeable lithium battery:

LiNi0.5Mn1.5O4 (LNMO) Spinell Operation potential : 4.7V

Standard Li batteries (LiCoO2): 3.5 V

Disadvantage right now:

- Capacity fade
- Limited life time

Properties of LNMO cells

Cyclic voltammetry at 0.1 mV/s at room temperature

Charging : Ni2+/4+ oxidation at 4.8V Discharging : Ni4+/2+ reduction at 4.6 V

Capacity fade for different charge rates

- The capacity is generally fading out
- The capacity changes with charge rate

Mechanisms ?

2-dim X-ray Fluorescence Imaging (0.5µm x 0.5µm resolution)

2mm

- After cycling pronounced "hot-spots" on the electrodes
- Higher cycling rates favor formation of "hot-spots", cracks and holes.
- Holes are surrounded by nickel

2-dim XANES Imaging

2-dim XANES Imaging at the Ni-K edge

Ni "hot-spots" show hampered kinetics, => do not participate in the redox reaction at 4.8V => At higher voltage looks fully oxidized

X-ray imaging techniques are powerful tools

- 20 Nanometer resolution for ptychography
- 500 Nanometer resolution for Fluorescence and XANES imaging

X-ray imaging techniques help

- To understand the process parameters of creating organic solar cells
- To view the processes of redox reactions in batteries

Acknowledgements

Ulrike Bösenberg, Gerald Falkenberg, Matthias Alfeld, Jan Garrevoet, Mateusz Czycycki, Juliane Reinhardt, Thorsten Claußen, Preety Bhargava, Martin Döring, Christian Schroer

Solar Cells

Henrik F. Dam, Thomas R. Andersen, Emil B. L. Pedersen, Karl T. S. Thydén, Martin Helgesen, Jon E. Carlé, Peter S. Jørgensen, Roar R. Søndergaard,

Mikkel Jørgensen, Eva Bundgaard, Frederik C. Krebs, Jens Wenzel Andreasen

Batteries

