XAS investigation of 'invisible' gold impurities in synthetic sulfide minerals

Alexander Trigub NRC "Kurchatov Institute"

X-ray absorption spectroscopy (EXAFS и XANES)

- EXAFS oscillations in energy region 50-1000 eV above edge X-ray absorption edge, which originate from photoelectron scattering on surrounding atoms.
- XANES near edge structure of X-ray absorption spectra, corresponds to transitions from core state to empty states near Fermi level.

EXAFS spectra in a plane wave approximation

In a plane wave and single scattering approximations oscillation part of EXAFS spectar can be calculated be formula:

Quantitative analysis of EXAFS

Quantitative analysis of EXAFS spectra consist in choosing a proper structural model and fitting calculated spectra to experimental data. As a result one obtain geometrical parameters, coordination numbers and mean square displacement of atoms from equilibrium positions.

<u>High</u> Energy Resolution Fluorescence Detection (HERFD)

Improve energy resolution by a factor > 200 !

Au L₃ edge HERFD XAFS spectra of Löllingite $FeAs_2 + 50$ ppm Au

Synthesis methods

Hydrothermal method (autoclaves, t = 450°C, P=1 kbar): *Pyrite FeS*₂ Covellite CuS

Salt flux method (silica glass tubes, t = 350 - 700 °C): AICI₃/KCI/NaCI, CsCI/NaCI/KCI,

Arsenopyrite FeAsS Löllingite FeAs₂ Covellite CuS Salt flux = transport medium

Furnace with capillaries

Heating experiment: *capillary*

Polymicro[®] silica glass capillary - OD = 350 µm, ID = 200 µm - Length 20 мм.

- Chou I-M., Song Y. and Burruss R. C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material. Geochimica et Cosmochimica Acta, 2008, 72, 5217-5231. - EMU notes in Mineralogy, V. 12, Eds. J. Dubessy, M.-C. Caumon and F. Rull, 2012.

Au in COVELLITE CuS

Concentration profile of Au in covellite determined with EPMA, No crystalline Au!

HERFD XAS experimental data

EXAFS analysis

	EXAFS	QE
R,Å	2.38	2.34
Ν	3	3
R,Å	3.24	3.22
Ν	6	6
R,Å	3.92	3.84
N	6	6

Models optimized be QE DFT code

FDMNES calculation

Au in Lollingite FeAs₂

Crystalline structure ;

•Concentration of 'invisible' Au is 50 ppm;

• No crystalline Au!

Au in PYRITE FeS₂

Fine-grained aggregates ;

- •Concentration of 'invisible' Au is 40 ppm;
- No crystalline Au!

EXAFS analysis points that Au atoms are placed in positions of Fe atoms: isomorphic substitution

Pyrite

Lollingite

Au in ARSENOPYRITE FeAsS

Crystalline structure;

•Concentration of 'invisible' Au is 50 ppm;

Au L₃ edge HERFD XANES spectra of Pyrite FeS_2 – Arsenopyrite FeAsS - Löllingite FeAs₂

Thank you for attention!