Simulations of near real-time EOP estimation from a future VGOS network

Tobias Nilsson¹, Maria Karbon¹, Benedikt Soja¹, Susanne Glaser², Robert Heinkelmann¹, Harald Schuh^{1,2}

1: GFZ German Research Centre for Geosciences, Potsdam, Germany 2: Technische Universität Berlin, Berlin, Germany

IVS General Meeting 2016, Johannesburg, South Africa, 13-19 March, 2016

Introduction

- One of the goals of VGOS is to reduce the latency between observation and availability of the results to less than one day
 - Ideally the results should be available in real-time
- Real-time availability is challenging, since it requires:
 - Real-time e-transfer from stations to the correlator
 - Real-time correlation and post-correlation analysis
 - Automated real-time data analysis
- To meet the challenge for the data analysis part, we have implemented a real-time capable Kalman filter in the VieVS@GFZ software (*Nilsson et al., 2015*)
- In this work we test the software through simulations

<ロト < 部 > < 注 > < 注 >

Real-time VLBI data analysis with VieVS@GFZ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ● ● ● ●

Kalman filter setup

▶ In the Kalman filter we estimate the following parameters:

- All 5 EOP (polar motion, UT1-UTC, celestial pole offsets): integrated random walk processes
- Station coordinates: random walk processes (highly constrained) + NNT/NNR
- Radio source coordinates: constant + NNR
- Zenith wet delays: random walk processes
- Tropospheric gradients: random walk processes
- Clocks: integrated random walk + random walk processes

(日) (部) (3) (3)

Simulations

- ► We have tested the Kalman filter through simulations (Pany et al, 2011)
- 25 days of observations from a potential future 30 station VGOS network were simulated
- The following random error sources were considered:
 - Troposphere (station-specific parameters, Nilsson and Haas, 2010)
 - Clocks (ASD 10⁻¹⁴ @ 50 min)
 - Observation noise (white noise, 10 ps)

・ロト ・部ト ・注ト ・注ト … 注

Simulation network

- 30 VGOS stations
- Slew rates:
- Australian sites, Warkworth, and GGAO: 5°/s in azimuth, 1.2°/s in elevation (actual values)
- Others: $12^{\circ}/s$ in azimuth, $6^{\circ}/s$ in elevation
- Only single telescopes

▲日▼▲□▼▲□▼▲□▼ 回 ろくで

Schedules

 Schedules generated with the VIE_SCHED

software

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Sources-based scheduling, 4 sources observed simultaneously

 Recording rate: 8 Gbit/s

 The very fast antennas (12°/s) make about 2000 scans/day, the others (5°/s) about 1600 scans/day

Schedules

 Schedules generated with the VIE_SCHED

software

- Sources-based scheduling, 4 sources observed simultaneously
- Recording rate: 8 Gbit/s
- The very fast antennas (12°/s) make about 2000 scans/day, the others (5°/s) about 1600 scans/day
- The very fast antennas make up to about 17000 observations/day, the others about 4000 observations/day

Results: UT1-UTC

- Upper plot: UT1-UTC estimated from the simulations (blue) and the time series used for generating the simulated delays (green)
- Large differences for the first couple of scans due to bad a priori values at the first epoch
 - Lower plot: UT1-UTC error (estimated-simulated) for the real-time forward Kalman filter (blue) and a post-processed Kalman filter solution (forward + backward + smoothing, red)

< ロ > < 同 > < 回 > < 回 >

Results: polar motion

260 550 Real-time estimates Real-time estimates 250 240 ejod 230 Simulated 500 450 400 400 Simulated 350 220 210 L 0 300 L 10 15 20 25 10 20 5 5 15 150 150 100 100 ∆ x-pole [µas] ∆ y-pole [µas] 50 50 0 -50 -50 Real-time -100 Real-time -100 Post-processing Post-processing -150 <mark>µ</mark>____0 -150 L 5 10 15 25 5 10 15 20 20 Dav Dav

x-pole

э

(日)

y-pole

25

25

Results: nutation

▲ロ > ▲母 > ▲臣 > ▲臣 > ―臣 ― 釣へで

Results: summary

- WRMS errors for the estimated EOP
- The WRMS values of real-time estimates are 40–50% higher than the post-processing ones

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

GEMEINSCHAFT

Reduced data set

- It may be difficult for all 30 stations to e-transfer all the data in real-time
- Thus we made three tests where we reduced the data available in real-time:

< □ > < 同 > < 回 >

- 1. Only every 5th scan available in real-time
- 2. Only every 10th scan available in real-time
- 3. Only the data from 10 core stations* available in real-time

*: Ishioka, Fort Davis, Onsala, Yebes, Seshan, Westford, Wettzell, HartRAO, Kokee, Hobart

Reduced data set

- It may be difficult for all 30 stations to e-transfer all the data in real-time
- Thus we made three tests where we reduced the data available in real-time:
 - 1. Only every 5th scan available in real-time
 - 2. Only every 10th scan available in real-time
 - Only the data from 10 core stations* available in real-time

*: Ishioka, Fort Davis, Onsala, Yebes, Seshan, Westford, Wettzell, HartRAO, Kokee, Hobart

Clock breaks and other problems

- Real-time analysis requires automated detection and correction of several problems, e.g. clock breaks, in real-time
- We have implemented an automated clock break and outlier detector in the Kalman filter:
 - For each epoch, the differences between the predicted and observed delays are calculated
 - If at least one absolute difference is larger than threshold (5σ)
 - Wait for the next couple of scans (next 5 minutes)
 - Run the Kalman filter without data assimilation to get predicted delays for these scans
 - Calculate the differences between the observed and predicted delays
 - If all differences for one station are large and of similar size: clock break
 - Only large differences at the initial epoch: outlier
 - If clock break detected: reinitialize the clocks
 - If outliers detected: remove these observations

Test of the clock break detection

- A clock break of 0.66 ns at 12:00 at one station was simulated
- Automated clock break detects and corrects this break correctly

Test of the clock break detection

- A clock break of 0.66 ns at 12:00 at one station was simulated
- Automated clock break detects and corrects this break correctly
- If not corrected, the clock break has a clear effect on other estimated parameters, like the station coordinates

Conclusions and outlook

- ► The Kalman filter is able to estimate all EOP with a precision of 20–30 µas in real-time from a 30 station VGOS network
- ▶ Problems, like clock breaks, can be handled autonomously
- Future work:
 - Test with real data
 - Improved stochastic modeling of the estimated parameters, such as better separation of polar motion and celestial pole offsets

(日) (部) (3) (3)

Thank you for your attention

This work was supported by the Austrian Science Fund (FWF), project P24187-N21 (VLBI-ART)

