An Overview of the Japanese GAA-V Wideband VLBI System

M.Sekido, K.Takefuji, H.Ujihara, T.Kondo, M.Tsutsumi, Y.Miyauchi, E.Kawai, H.Takiguchi, S.Hasegawa, R.Ichikawa, Y.Koyama, Y.Hanado, J.Komuro, K.Terada, K.Namba, R.Takahashi, K.Okamoto, T.Aoki,

IVS-GM 2015@Johanesburg

K.Watabe, T.Suzuyama (ALST/NMIJ)

T.Ikeda (NICT)

GALA-V Project Overview

Frequency comparison by using Transportable Broadband telescopes

• VLBI Sensitivity :VLBI Sensitivity = $\propto D_1 D_2 \sqrt{BT}$

B: 16MHz \rightarrow 1024MHz (64 times)

■ Radio Frequency: 3-14GHz

Data Acquisition: 4 band (1024MHz width)

Fc=4. 0GHz, **5.** 6GHz, **10.** 4GHz, **13.** 6GHz

Effective Bandwidth: 3. 8GHz (10 times of Conventional) 1GHz

Topics of our PROJECT

1. Broadband feed developed for Cassegrain Antenna(Kashima 34)

- IGUANA-H: 6.5-15GHz
- NINJA : 3-14.4GHz

3. Our Broadband VLBI Experiment shows, atmospheric delay changes order of 20 psec in hundreds seconds of timescale, thus quick switching short interval observation is required.

Broadband Antennas used in Gala-V Project

Kashima 34m

MARBLE1 1.6m @NMIJ(Tsukuba)

MARBLE12 1.5m @Konganei

Original broadband Feed NINJA, IGUANA-H

Rindgren QRHA

Reason why NICT Developed Broadband Feeds

 \sim 34deg.

Requirement of Broadband Frequency and Narrow beam width

~120deg.

Broadband Feed for Cassegrain optics Kashima 34m antenna

IGUANA-H Feed (6.5-15GHz)

Planning change to Dual Polarization Currently Single linear Polarization

NINJA Feed (3.2-14.4GHz, nominal)

NINJA Broadband Feed on 34m antenna

SEFD [Jy]

Signal Chain From Feed to DAS

Direct Sampling of RF signal, Digital Filtering without Freq. Conv.

K6/GALAS

Basic Sampler system has been tested and developed by Porf. Kawaguchi, Dr.Kono, Dr. Oyama of NAOJ in collaboration with Elecs Co.Ltd.

ring without Freq. Conv.	
IF Input Port	2
Input Freq. Range	0.1-16.4 GHz
Sampling mode	DBBC Mode Nch/unit=1,2,3, or 4 2048 Msps/ch Qbit=1, or 2 bit
Output Port	10GBASE-SR, 4port
Max Data rate	16384 Mbps/port

Domestic Broadband Experiments 14-15 Aug. 2015

As close as Zero Redundancy Frequency allocation

Fine Delay Resolution Without Ambiguity

Direct Sampling (K6/GALAS)

Delay Insec

Delay Behavior Broadband Delay (3.2-12.6GHz) Kashima34 – Ishioka 13m

Alan Standard Deviation

Full Bandwidth Synthesis #1-#(6-14GHz) by Phase Calibration with Radio Source

Procedure of Broadband Phase Calibration with radio source

Procedure of Broadband Phase Calibration with radio source

Advantages of Direct RF Sampling Technique proposal of Pcal-free system

Delay-Cal device is not necessary, too.

Full Bandwidth Synthesis #1-#4(3.2-11.6GHz) by Phase Calibration with Radio Source

Phase/delay characteristics for calibration

Calibration Cross Spectrum Phase

How much this calibration strategy will be stable? ⇒ One evaluation with existing data...

Summary

- 1. <u>We developed Broadband feed for Cassegrain focus</u> telescope to enable VGOS compatible observation with existing 34m telescope.
- 2. The Broadband BWS software started to work.
 - * We need long baseline VLBI data for testing/improvement.
- 3. <u>Direct RF sampling technique</u> is quite useful especially in case of broadband Pcal device is difficult.
 - * Un modeled phase variation rms was evaluated to be less than 20 deg.
 For 24 hours on Kashima34 Ishioka 13m.

Acknowledgements

- Development of Broadband Feed is was supported by a grant (2013-2014) of Joint Development Research from National Astronomical Observatory of Japan(NAOJ).
- * Broadband experiments with Ishioka Station was kindly supported by GSI. Thinks to Fukuzaki-san, Kawabata-san, Wakasugi-san.
- * Highs speed research network environment is supported by JGN-X.

Thank you for attention.

