

9th IVS General Meeting, March 13-19, 2016, Johannesburg, South Africa

VLBI observations of GNSS signals on the baseline Hobart-Ceduna

- First results

Andreas Hellerschmied¹, J. Böhm¹, Y. Kwak¹, J. McCallum², L. Plank²

¹ Technische Universität Wien, Austria

² University of Tasmania, Australia

Satellite observations with VLBI

- Motivation
 - Establish inter-technique ties in space
 - Improved future ITRF realizations

"Co-Location in space " (Plank L, 2014)

VLBI GNSS observations

- Observation approach
 - Apply observation strategies common in geodetic VLBI
 - Baseline delays = main observables
 - Direct observations of GNSS satellites
- Previous VLBI satellite observations, e.g.
 - Tornatore et al. (2010a/b, 2014)
 - Hellerschmied et al. (2014)

- Clear strategies for data acquisition and the geodetic analysis are still missing
- Established procedures to plan, observe, correlate and analyze VLBI observations to GNSS satellites
- Realized several experiments in 2015, baseline Ceduna-Hobart (Australia)

Data acquisition

- Observation planning with VieVS satellite scheduling program (Hellerschmied et al., 2015)
 - Module of the Vienna VLBI Software (VieVS, Böhm et al., 2012)
 - Generation of schedule files (VEX format)

- No dedicated satellite tracking features at Cd and Ho
- "Stepwise" satellite tracking
 - Satellite orbits converted to sequences of discrete positions (Ra/Dec)
 - 10 sec antenna reposition interval

Principle of stepwise satellite tracking

Correlation and analysis

- VieVS upgraded with near field delay model (Plank et al., 2014)
 - A priori delays for GNSS satellites observations
 - Iterative solution of the light time equation (e.g. Klioner, 1991)
 - IGS final orbits (SP3 files)
- Correlation with DiFX (2.4.1)
 - Correlator input model for near field observations to satellites calculated in VieVS
- Fringe fitting with the FRING task in AIPS and with fourfit
- Preliminary data analysis with VieVS

Experiments at Cd-Ho

Stations

- HOBART26 (26m), Mk4
- CEDUNA (30m), DBBC
- Operated by UTAS
- Equipped with L-band receivers (1.35 – 1.65 GHz)

GNSS-VLBI Experiments

- Several test sessions in June 2015
- g179a: 2015-06-28, 2 hours
- g236a: 2015-08-24, 4 hours
- g238a: 2015-08-26, 4 hours

- GLONASS and GPS satellites + quasars (calibrators)
- L1 and L2 band

The g236a experiment

- 24th Aug. 2015, 12:00 16:00 UT
- GPS satellites (+ quasars)
 - PRN: 02, 12, 24, 25
- 23 satellite scans @ 5 min duration
- 4 channels, BW = 16 MHz
 - L1 (1,57542 GHz) + L2 (1,2276 GHz)
 - X + Y linear polarization
- 10 sec integration time in DiFX
- SNR in fourfit
 - L1: > 7000
 - L2: ~ 500-700

Skyplot for Cd, g236a experiment, (2015-08-24, 12:00 – 16:00 UT) Duration of individual scans = 5 min; the observation time is color-coded

Fringe delays (1)

- **Fringe delays** = Deviation from the a priori delays (correlator input model)
- Single band delays
- Offsets between recorded channels (up to 40 ns)

Fringe delays (2)

- Offsets between recorded channels are...
 - Characteristic for specific satellite
 - quite stable over the entire session

Observed – Computed (1)

- Observed: Total delays (= Fringe delays + correlator input model)
- Computed: Near field delay modelling in VieVS
- Ionospheric delay corrections from IGS TEC Maps (range: 1-5 ns) (Tierno Ros et al., 2011)
- Variations between 1 and 4 ns per satellite track

Observed – Computed (2)

RMS within 5 min. scans: ~ 10-100 ps

Parameter estimation

- Parameter estimation in VieVS
 - Only clock for HOBART26 (fixed for Cd)
 - Hourly clock offsets + rate + quadratic term

Models and observations have to be improved to estimate further parameters meaningfully, but in principle it works!

- Successfully established procedures to plan, observe and correlate VLBI satellite data
 - Observation planning, a priory delay modelling and parameter estimation with VieVS
 - Correlation with DiFX
 - Fringe fitting in AIPS and fourfit
- UTAS VLBI antennas are a great test bed for VLBI GNSS observations
- Several successful GNSS-VLBI experiments in 2015 on the baseline Cd-Ho
 - Acquired several consistent data sets which serve as basis for our research and studies

Questions?

Contact: andreas.hellerschmied@geo.tuwien.ac.at

References:

Böhm J et al. (2012), The New Vienna VLBI Software, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August 2009 - 4 September 2009, Series: International Association of Geodesy Symposia, Vol. 136, Kenyon S, Pacino MC, and Marti U (eds.), ISBN 978-3-642-20337-4, pp. 1007-1012.

Hellerschmied A et al. (2014), Observing satellites with VLBI radio telescopes – practical realization at Wettzell, 8th IVS General Meeting, Shanghai, March 2014.

Hellerschmied A et al. (2015), Scheduling of VLBI Observations to Satellites with VieVS, Proceedings of the IAG Symp., REFAG 2014. Luxembourg, Series: International Association of Geodesy Symposia, DOI 10.1007/1345 2015 183, available online.

Tierno Ros et al. (2011), Use of GNSS-derived TEC maps for VLBI observations, EVGA working meeting proceedings, Bonn, 2011, pp 114-117.

Plank L et al. (2014), Precise station positions from VLBI observations to satellites: a simulation study, J Geod, 88: 659–673.

Tornatore V et al. (2010a), Planning of an Experiment for VLBI Tracking of GNSS Satellites, IVS 2010 General Meeting Proceedings, p.70–74.

Tornatore V et al. (2010b), Tracking of Glonass satellites by VLBI radio telescopes, 5th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, 21 – 23 September 2010.

Tornatore V et al. (2014), Direct VLBI Observations of Global Navigation Satellite System Signals, International Association of Geodesy Symposia, Proc. IAG General Assembly, Melbourne - 2011, 139 pp. 247-252.