The effect of the solar cell band gap on power yield

Graham Webber and Hartmut Winkler Department of Physics

Content

Solar irradiance calculations

- Theoretical efficiency limit for single p-n junction solar cell
- Radiative recombination
- What is the Shockley-Queisser limit
- Why this paper
- Results
- Conclusion
- Questions

Extinction of the solar irradiance

ABSORBED

SCATTERED

▶ O₂
▶ CO₂
▶ O₃
▶ H₂O

Rayleigh Scattering Mie Scattering

Extinction examples

W/m²/nm

Sunlight Spectral Shift

Sunlight irradiance components

W/m²/nm

Photovoltaic cell

Photon with energy less than the band gap

Photon with energy greater than the band gap

n

Not to scale

Radiative recombination

Electrons can drop back into the Valance band and release that energy as light

Valance Co Band ba

e Conduction band

Not to scale

Effect of radiative recombination on absorption factor

Noteworthy Calculations of Bandgap vs. Efficiency

Why this paper?

- Single solar spectrum used
- Creating single optimal peak
- Solar spectrum changes with zenith angle and with atmosphere composition
- Thus the optimal band gap will differ for different locations and different atmospheric conditions
- How much will it differ for South Africa

De Aar 21 June vs NREL1.5AM

- Higher air mass
- Lower precipitable water

Shockley-Queisser limit for different times of day

Result for 21 June

► 10 minute intervals

- Optimal band gap 1089 nm
- Efficiency for band gap 925nm 31.67%
- Efficiency for band gap 1089nm 33.34%
- Thus 5.3% higher energy yield

Results

Date	Efficiency for 925nm [%]	Optimal efficiency [%]	Optimal band gap [nm]	Increase in power [%]
2000/06/21	31.67	33.34	1089	5.3
2000/07/21	31.34	32.57	1089	3.9
2000/08/21	31.76	32.84	1089	3.4
2000/09/21	31.70	32.56	1073	2.7
2000/10/21	31.52	32.56	1105	3.3
2000/11/21	31.21	32.25	1105	3.4
2000/12/21	31.80	32.51	1066	2.2

Conclusion

- There is significant variance in optimal bandgap with atmospheric conditions.
- Bandgap should be considered when designing solar power plants.
- Target location should be considered when designing solar cells.
- for South African conditions, a lower energy band gap is optimal.
 - High latitude
 - Peak power demand in winter

Questions ?