

An integrated software based analytical model for the signal path efficiency of the HartRAO lunar laser ranger optical system

Sphumelele C. Ndlovu^{1, 2}, Ludwig Combrinck^{1, 2, 3}, Nokwazi P. Nkosi^{1, 2} and Roelof C. Botha¹

¹Space Geodesy Programme, Hartebeesthoek Radio Astronomy Observatory, Krugersdorp, South Africa,

²Programme of Land Surveying (Geomatics), School of Engineering, University of KwaZulu-Natal, Durban, South Africa

³Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

Introduction

What is HartRAO-LLR?

- Hartebeesthoek Radio Astronomy Observatory's Lunar Laser Ranger.
- Lunar Laser Ranging (LLR) is a geodetic technique.

• This is currently the only LLR in the Southern Hemisphere.

Overview of the HartRAO-LLR system

Measurement challenge

- The HartRAO Lunar Laser Ranger (LLR) system requires a state-of-the-art software tool.
- The existing link budget equation estimates the number of returned photons by calculating the mean number of detected returned photons as,

$$n_p = \eta_q \left(E_T \frac{\lambda}{hc} \right) \eta_t G_t \sigma \left(\frac{1}{4\pi R^2} \right)^2 A_r \eta_r T_a^2 T_c^2.$$
(1)

• Equation 1 becomes,

$$n_p = C_{system} \left(\frac{T_a T_c}{R^2}\right)^2, C_{system} = \eta_q \left(E_T \frac{\lambda}{hc}\right) \eta_t G_t \sigma \left(\frac{1}{4\pi}\right)^2 A_r \eta_r.$$
(2)

Returned photons estimation

Generating data

Simulations and analysis

Laser Specifications	SLR	LLR
Output Energy, mJ	0.5	120
Repetition rate, Hz	1000	20
Beam Diameter, mm	~3	~12
Pointing stability, µrac	d <30	<50
Beam Diameter, m	0.2	1.0

Slant range

Retroreflectors

The number of returned photons linearly varies with the lunar reflector cross section. A study on the effective area of the corner cube has revealed that, at arbitrary incident angle, the area is reduced by the factor,

$$\eta(\theta_{inc}) = \frac{2}{\pi} \left(\sin^{-1} \mu - \sqrt{2} \tan \theta_{ref} \right) \cos \theta_{inc}$$

where $\mu = \sqrt{1 - \tan^2 \theta_{ref}}$

The peak optical cross-section in the centre of the reflected lobe decreases as the incident angle increases,

$$\sigma_{eff}\left(\theta_{inc}\right) = \eta^{2}\left(\theta_{inc}\right) \frac{\pi^{3}\rho D^{4}}{4\lambda^{2}}$$

Results and discussion

Returned photons

Parameter	Min	Max
	value	value
Transmit optics efficiency	0.4	0.9
Slant range (km)	399929	347929
Detector quantum efficienc	y 0.4	0.7
Receive optics efficiency	0.4	0.9
Atmospheric transmission	0.02	0.81
Cirrus transmission (Cloud	0.1	1
cover)		
Returned photons/minute	0.003	12

Conclusion

- We have successfully developed an integrated software model that will enable optimal signal path efficiency for the HartRAO's LLR system.
- Our estimated signal return rate is a true reflection of the LLR photons returns.

Siyabonga (Thank you).

science & technology

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

SPACE FI