Petrological investigation of Merensky Reef Unit lithologies at Two Rivers Platinum Mine and comparison to stratigraphically similar rocks north of the Steelpoort fault, eastern Bushveld Complex, South Africa

J.J. Beukes ${ }^{1}$, C.D.K Gauert²

Department of Geology, University of the Free State, P.O . Box 339, Bloemfontein 9300, Republic of South Africa jarlenb7@gmail.com1, gauertcdk@ufs.ac.za2

ABSTRACT

This research study focuses on the enigmatic occurrence of noritic lenses (termed "brown sugar norite" by mine geologists, here after referred to as BSN), within the feldspathic pyroxenite of the Merensky Reef (MR) at Two Rivers Platinum Mine which is situated on the southern sector of the eastern limb of the Bushveld Complex. The cumulate rocks associated with the MR unit are characterised by the use of geochemistry and mineralogy and compared to stratigraphically similar rock types north of the Steelpoort fault at Eerste Geluk
The BSN are fine-grained and appear to only occur where the upper chromite stringer of the MR unit is present. Orthopyroxene is the dominant cumulate phase in both the BSN and feldspathic pyroxenite followed by interstitial plagioclase. Clinopyroxene occurs mostly as exsolved lamellae phase within orthopyroxene and intermittent rims around orthopyroxene which could be attributed to a decrease in temperature and compositional change of the melt. Textural features of the different rock types suggest recrystallization of minerals and disequilibrium of magma. At Eerste Geluk BSN is absent, minerals of the Merensky lithologies display more alteration or deformation and a higher concentration of hydrous minerals. Eerste Geluk's close proximity to the Steelpoort fault makes it plausible for dynamic magmatic processes to have been active (Cawthorn et al., 2002) resulting in the alteration of minerals. Strontium isotope analyses of five representative samples of the Merensky interval at TRP yielded ${ }^{87} \mathrm{~S}^{86} \mathrm{Sr}$ r ${ }^{2}$ Sio to pyrrhotite and chalcopyrite. Pd is the most dominant PGE present in BMS analysed with concentrations ranging between 0.5 to 428 ppm .

CONCLUSION

Figure 2 a) illustrates the Merensky reef where BSN lense is intersected. Figures 2 a) and c) shows the contact between theMerensky Figures 2b) and c) shows the distribution sulphides in the BSN and pyroxenite. It can be seen that the minerals in the BSN are finer grained and contain relatively less sulphides. This method also make sit possible to determine to view defects such aspores/cracks visible in the rock.

[^0]

[^0]: Textural features along with complementary mineral chem
 injections, fractionation and disequilibrium of the magma.
 Dynamic magma processes such as hydrothermal fluid ay have we proximity to the Steelpoort Fault which is believed to may have been the feeder. Olivine accompanied by Iddingsite occurs at Eerste Geluk but not at TRP
 Sr $/{ }^{86}$ Sr ratios of representative rocks of TRP are typical of Critical Zone magma
 PGE mineralisation in the rocks of this study are possibly formed by a various processes. Redistribution and recrystallization of PGMs by late magmatic processes such as hydrothermal fluids are possible
 Enigmatic BSN lenses within pyroxenite may be due to change in magmatic controls such as rate of cooling resulting in a finer grained texture, possibly formed in a sub chamber and later introduced into the pyroxenite.

