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Abstract. A photonic crystal slab was designed in COMSOL Multiphysics using gallium 

arsenide (GaAs) pillars placed equidistant from each other in air. A defect was created by 

removing some GaAs pillars across the crystal slab geometry to form a 90
o
 bend through the 

structure. Structural parameters; the pillar diameter and inter-pillar spacing were separately 

varied and waves were propagated through the created defect with different allowed 

wavelengths, within and determined by the photonic crystal’s bandgap. It was observed for the 

air filling fraction at constant pitch that, when the factor given by the ratio of the air hole 

diameter to the pitch is less than 0.63, an increase in air hole diameter requires corresponding 

increase in the wavelength which can be propagated within the waveguide with minimum loss. 

When both air hole diameter and pitch were varied the increase in the air filling fraction was 

also observed to result in a photonic bandgap of lower frequency range as only larger 

wavelengths would be allowed to propagate. When the air filling fraction factor was less than 

0.63 the photonic crystal waveguides exhibited slightly increased confinement and bend loss. 

The diameter and pitch affected the core resonance resulting in selected wavelength bands 

being propagated through the created defect in the waveguide. Only those bands whose value 

coincides with the photonic bandgap were allowed to propagate. 

 

1.  Introduction 
Photonic crystals are materials of periodic dielectric media which are able to localise light in specific 

areas and prevent it from propagating in certain directions. Their structural build up resembles the 

lattice structures of crystalline materials and they have photonic bandgaps whose optical properties are 

analogous to the energy bandgaps [1] in electrical semiconductors.  Light propagation in a hollow core 

is possible within photonic crystal fibers (PCFs). These are single material optical waveguides with an 

array of periodic air holes across the transverse section running down their entire length. In the 

cladding, the refractive index is modulated in space on a wavelength scale [2]. Very high powers can 

be propagated without being limited by material threshold [3]. PCFs have application in 

supercontinuum generation, optical coherence tomography, frequency metrology, microscopy and 

spectroscopy [4]. Many modelling techniques have been applied to study propagation characteristics 

[5] of solid core, index guiding PCF’s.  For hollow core PCF’s the control of propagation 

characteristics which include dispersion, bend loss, confinement loss and effective index are 

determined by the structural parameters, namely air hole diameter and the pitch. Through simulation, 

COMSOL Multiphysics [6], a finite element method based software, was used to design and study 

various photonic crystal structures distinguished by variation in structural parameters and their 

associated wave propagation characteristics. Confinement loss, bend loss and the allowed photonic 

bandgap wavelength were monitored for the various air filling fractions. 

2.  Theory and Simulation Design 

In a photonic crystal with periodic dielectric medium of periodicity (Λ), any wave of wavelength 

comparable to twice the periodicity [7] is not allowed to propagate through the photonic crystal. The 

wave is within the photonic bandgap, hence it is highly reflected. The partial reflections at each period 



 

 

 

 

 

 

are in phase. As they reinforce one another

as a result such a wave will not be propagated. 

experience no scattering as the periodic variation in the refractive index results in the scattering

cancelling out coherently [7], so they propagate

is created in such media the reflecting 

crystal material becomes a waveguide. Varying the periodicity by altering the inter

air hole diameter affects the wavelength that can be guided as well as the p

Photonic crystal slabs were designed in COMSOL Multiphysics

equidistant from each other in air. A 

90o bend across the slab geometry as shown in figure 1. 

a simpler arrangement than the triangular and hexagonal 

determine with certainty that the defect has guidance to the 

study of the effects of structural parameter variation on bend loss.

 

 
Figure 1. A 2D photonic crystal slab with a 90º bend
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As determined by the photonic bandgap, different allowed wavelengths within the photonic crystal

bandgap are found and the waves propagated along t

diameter and pitch. The air filling fraction factor (f) gi

design [10] using this relation; 
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where Λ is the pitch given by the inter

represents the air gap separating any adjacent pillars. 

external boundaries by setting them to the scattering boundary condition and the source at the input set 

as a plane wave whose electric field in the z component has

3.  Simulation 

The pitch was maintained constant at 

0.7 � 10��m to 2.8 � 10��m. Results we

corresponding air filling fraction. The pitch was

while the diameter remained constant at

of normalised wavelength against air filling fraction.

the amplitude of the electric field after the 90º bend through 

they reinforce one another, they form standing waves [8] with the incident

such a wave will not be propagated. The other waves with a frequency outside the bandgap

the periodic variation in the refractive index results in the scattering

, so they propagate with minimal attenuation. When a hollow line defect 

reflecting wave can be allowed to propagate within the defect and the 

waveguide. Varying the periodicity by altering the inter-hole spacing or the 

diameter affects the wavelength that can be guided as well as the propagation characteristics. 

Photonic crystal slabs were designed in COMSOL Multiphysics [6] using GaAs pillars placed 

. A line defect was created by removing some GaAs pillars to form a 

as shown in figure 1. The structure is a square lattice

triangular and hexagonal lattice structures. The bend was 

certainty that the defect has guidance to the propagating wave while t

of structural parameter variation on bend loss. 

 
2D photonic crystal slab with a 90º bend across its geometry.

diameter, d � 0.7 � 10��m and pitch,Λ � 1.875 � 10�� 

 

bandgap, different allowed wavelengths within the photonic crystal

propagated along the 90º bend in different slabs of varying pillar 

diameter and pitch. The air filling fraction factor (f) given by the ratio in (1) is calculated for each 
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is the pitch given by the inter-pillar spacing and d is the GaAs pillar diameter. 
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2a and 2b. 

 

Figure 2. 2D Photonic crystal slabs with same value of pitch 

10��m, f � 0.63 (b) d � 1.4 � 10�

4.  Simulation Results and Analysis
Three dimensional views of the wave propagation through the photonic crystal slabs are presented in 

figures 3, 4 and 5. The guided wavelengths were recorded. A d

distinguishable in variable designs while identical designs show

only at different wavelengths (figure 5d)

calculated while pitch was maintained

 

Figure 3. Simulation results for constant

10��m, f � 0.81, λ� 7.8 � 10��m . 

after the 900 bend, E" � 0.98 Vm�&

(a) 

(a) 

inement loss was determined qualitatively from examination of the 3D 

s were seen to leak away from the defect through the boundaries into 

designs were altered through variation of photonic crystal structural 

same square lattice structure was maintained through all designs as shown in figures 

 
2D Photonic crystal slabs with same value of pitch Λ � 3.75 � 10��m. (a) d

��m, f � 0.25  

Analysis 
dimensional views of the wave propagation through the photonic crystal slabs are presented in 

wavelengths were recorded. A difference in propagation is notably 

distinguishable in variable designs while identical designs show similar propagation characteristics

(figure 5d). The diameter was varied and the air filling fraction factor (f) 

maintained constant at a chosen standard value of Λ* � 3.75

     

constant pitch Λ* � 3.75 � 10��m: (a) 3D propagation for
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defect through the boundaries into 

photonic crystal structural 

as shown in figures 
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dimensional views of the wave propagation through the photonic crystal slabs are presented in 
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3D propagation for d � 0.7 �
 "� in figure 3a, 



 

 

 

 

 

 

Figure 4. Simulation results for 3D propagation at 

0.72, λ � 9.3 � 10��m E" � 1.00

0.60 Vm�& (c) d � 2.1 � 10��m

10��m, f � 0.25, λ � 6.8 � 10��m 

 

In figure 3b, the cross sectional plot is used to determine the electric field amplitude (

of figure 3a, after the bend. The photonic crystal i

are below the bandgap cut-off (figure 5c

transparent and incoherently scattering. 

show that the smaller wavelengths seem to

leak away into the cladding. Confinement loss is significant for small air filling fractions

 f , 0.625 while bend loss is slightly higher for air filling fraction

0.63 , � , 0.72 as deduced from the electric field amplitude values 

shows that varying the pitch at constant pillar diameter 

frequency with increasing air filling fraction. Larger wavelengths are accommodated as the air holes 

separating the pillars are increased 

when the air filling fraction is the same for similar structural geometry but

different structural parameter dimensions then the permitted wavelength varies directly as the air hole 

spacing as evidence in figures 4d and 5a.

(c) 
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3D propagation at constant pitch Λ*: (a) d � 1.05

00 Vm�&. (b) d� 1.4 � 10��m, f � 0.63, λ � 1.0 �

m, f � 0.44, λ � 7.98 � 10��m E" � 0.90 Vm�&. (

m E" � 0.55 Vm�&. 

b, the cross sectional plot is used to determine the electric field amplitude (E"

The photonic crystal introduces evanescence to waves whose

(figure 5c) while for higher frequencies outside the bandgap it

scattering. When compared to figures 4a and 4b, figures 4c

seem to propagate with increased confinement loss, 

leak away into the cladding. Confinement loss is significant for small air filling fractions

end loss is slightly higher for air filling fractions between  0.25

as deduced from the electric field amplitude values of figures 3, 4 and 5

arying the pitch at constant pillar diameter has the effect of decreasing the bandgap 

frequency with increasing air filling fraction. Larger wavelengths are accommodated as the air holes 

 and so is the air filling fraction (figures 4a and 4b)

lling fraction is the same for similar structural geometry but having proportionately

different structural parameter dimensions then the permitted wavelength varies directly as the air hole 

in figures 4d and 5a. 

z 

x 

y 

z 

x 

y 

(d) 

(b) 

 

 

05 � 10��m, f �

� 10�-m E" �

(d) d � 2.8 �

" � 0.98Vm�&) 

waves whose frequencies 

for higher frequencies outside the bandgap it is 

figures 4c, 4d, 5a and 5b 

 as they tend to 

leak away into the cladding. Confinement loss is significant for small air filling fractions [11], where
 

, � , 0.5 and 

figures 3, 4 and 5. Figure 6b 

effect of decreasing the bandgap 

frequency with increasing air filling fraction. Larger wavelengths are accommodated as the air holes 

and so is the air filling fraction (figures 4a and 4b). In figure 5d, 

having proportionately 

different structural parameter dimensions then the permitted wavelength varies directly as the air hole 

z 

x 

y 

z 

x 

y 



 

 

 

 

 

 

 

Figure 5. Simulation results for propagation of different wavelengths through the photonic crystal: 

(a) 3D propagation with pillar diameter 

10��m, λ � 3.39 � 10��m E"

10��m, λ � 5.82 � 10��m E" � 1

the bandgap d � 0.7 � 10��m, f �

wavelength with inter-pillar spacing at constant air filling fraction
 

 

The simulation results in figures 3 to 5

fraction to plot the graphs in figures 5d and

corresponding increase in the allowed wavelength until the air filling fraction reaches 0.625. After that 

further increase in air filling fraction results in a corresponding increase in allowed frequency 

opposed to the wavelength [9]. The graph in figure 

the fully vectorial effective index method and the scalar effective index method. A change in the air 

filling fraction consequently alters the effectiv

wavelength change with refractive index i

wavelength.  

(a) 

(c) 

   

         

Simulation results for propagation of different wavelengths through the photonic crystal: 

3D propagation with pillar diameter constant at d � 1.4 � 10��m, f � 0.25,

� 0.60 Vm�&. (b) d � 1.4 � 10��m, f � 0.5

1.00 Vm�&. (c) Evanescence when optical frequency is not within 

� 0.63, Λ � 1.875 � 10��m, λ � 1.0 � 10�-m. (d)

pillar spacing at constant air filling fraction f � 0.63.  

The simulation results in figures 3 to 5b were used to obtain values of wavelength and air filling 

s 5d and 6. Increase in air filling fraction at constant pitch requires 

corresponding increase in the allowed wavelength until the air filling fraction reaches 0.625. After that 

further increase in air filling fraction results in a corresponding increase in allowed frequency 

The graph in figure 6a resembles a dispersion curve modelled

the fully vectorial effective index method and the scalar effective index method. A change in the air 

filling fraction consequently alters the effective index of the crystal [11, 12]. At  

wavelength change with refractive index is zero, hence  λ Λ⁄ � 2.68 is normalised zero dispersion 
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Simulation results for propagation of different wavelengths through the photonic crystal: 
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(d) Variation of 

were used to obtain values of wavelength and air filling 

on at constant pitch requires 

corresponding increase in the allowed wavelength until the air filling fraction reaches 0.625. After that 
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Figure 6. Variation of wavelength with inter

fraction determined for constant value of pitch. (b) wavelength against air filling fraction for fixed 

pillar diameter. 

 

The change in the inverse gradient of figure 

with respect to wavelength [13, 14

positive to negative as the slope changes from a decreasing to an increasing gradient

to the transition from the normal to the 

5.  Conclusions 
Generally, wavelengths allowed to propagate within the hollow core PCF increase with an increase in 

the air filling fraction therefore the photonic bandgap is affected by variation of structural parameters

Only frequencies within the bandgap are propagated along the hollow created in the photonic crystal.

Confinement loss and bend loss 

dispersion are controlled by variation of 

index and wavelength. 
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