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Abstract. Nodal diffusion methods are often used to calculate the distribution of neutrons in
a nuclear reactor core. They require few-group homogenized neutron cross sections for every
heterogeneous sub-region of the core. The homogenized cross sections are pre-calculated at
various reactor states and represented in a way that facilitates the reconstruction of cross sections
at other possible states. In this study a number of such representations were built for the cross
sections of a MOX (mixed oxide) fuel assembly via hierarchical Lagrange interpolation on
Clenshaw-Curtis sparse grids. Traditionally, nodal reactor core simulators have employed cross
sections with two energy groups, but there is evidence that more energy groups are needed to
simulate reactor cores that contain MOX. Representations were therefore constructed for both
the traditional two energy groups and a six energy group structure. Both the rate at which the
representation accuracy improves with the number of samples and the complexity of the cross
section dependence on individual state parameters were examined. The anisotropy feature of the
representation procedure, which allows more samples to be taken for state parameters that are
known to be more important to the representation accuracy than others, was applied throughout.
The results show that the representation method allows both two-group and six-group cross
sections to be represented in a computationally efficient manner to an industrially acceptable level
of accuracy, despite additional complexity in the dependence of six-group cross sections on the
state parameters.

1. Introduction
Plutonium is produced in reactors that use low-enriched uraniumoxide (UOX) fuel through the transmutation
of uranium. The fissile isotope 239

94Pu can be recovered from spent UOX fuel and included during the
fabrication of new fuel assemblies, which are then known as mixed oxide (MOX) fuel. Many pressurized
water reactors (PWRs) load at least a part of the reactor core with MOX fuel, but this affects the neutron
distribution in space and energy as well as the response of a reactor.

Computer models are used to calculate operational and safety parameters of a reactor core, both before
start-up and during operations. These calculations must often be performed in a limited period of time, and
computational efficiency is therefore an important consideration. One approach to achieve this efficiency
is to use so-called nodal methods to numerically solve the diffusion approximation of the neutron transport
equation [1]. Nodal methods use average material properties over relatively large regions in the core,
and often over broad ranges of incident neutron energy. These material properties are described by cross



sections that are averaged by flux-volume weighting, which results in so-called few-group homogenized
cross sections.

The homogenized cross sections depend on various thermo-hydraulic and material conditions that may
exist in the reactor core. These are known as state parameters. The state parameters that are typically
used in PWRs are: burnup, soluble boron concentration, fuel temperature, moderator temperature and
moderator density [2].

Two types of homogenized cross sections are used in the full core calculations, namely microscopic
and macroscopic cross sections. In this context, a macroscopic cross section is an effective cross section
for several isotopes that are lumped together, which also takes into account the number density of each of
these isotopes. A microscopic cross section is the probability that a given isotope will undergo a certain
reaction, such as absorbing a neutron, averaged over the volume of the homogenized region and weighted
by the neutron flux. The older generation of the full core simulators generally utilized macroscopic cross
sections. However, there are several advantages of using microscopic homogenized cross sections for
some neutronically important isotopes [3] and therefore this model is becoming more prevalent.

The few-group homogenized cross sections are pre-calculated for a limited number of reactor states and
represented by mathematical functions in a way that would facilitate their reconstruction at other reactor
states during the full core simulation. In the traditional methods, the homogenized cross sections are
stored in multi-dimensional tables with either a linear interpolation rule, or a polynomial approximation
which is usually limited to second order polynomials [4].

Nodal methods may be less accurate when applied to cores that contain MOX fuel than for cores that
are loaded exclusively with UOX fuel [5]. Four ways to increase the accuracy with which both MOX
and UOX fuelled cores are modelled are listed in [5], one of which is to increase the number of broad
energy groups. A change in the number of broad energy groups may also impact the way in which the
cross sections depend on the state parameters in each energy group and therefore the accuracy of a given
representation method. The energy group structure that was used in this study is similar to the six-group
structure proposed in [6] for modelling some of the important neutron-nuclear interactions for MOX
fuelled cores.

The focus of this study is the representation of the few-group homogenized cross sections of a MOX
fuel assembly using a sparse grid interpolation method [3, 7, 8], with the aim of limiting the cross section
reconstruction errors during full core nodal calculations. This method, which uses a combination of
sparse grid sampling and hierarchical polynomial interpolation with Lagrange basis functions, has been
successfully applied for the few-group cross section representation of some light water reactors [3, 7, 8].

2. Problem description and methodology
This study addressed the problem of representing a few selected cross sections of a MOX fuel assembly
whose specifications are contained in a Nuclear Energy Agency benchmark [9]. A model of this MOX
fuel assembly was created in the HEADE (heterogeneous assembly depletion) code [10] of the OSCAR-4
(overall system for calculation of reactors, generation 4) system [11]. Using this model, several sets of the
fission, nu-fission, transport and absorption homogenized cross sections were calculated at the sparse grid
points in the state parameter space of the MOX fuel.

The homogenized cross sections were calculated for sixteen individual, neutronically important isotopes
(namely 234

92U,
235
92U,

236
92U,

237
92U,

238
92U,

237
93Np,

239
93Np,

238
94Pu,

239
94Pu,

240
94Pu,

241
94Pu,

242
94Pu,

241
95Am, 13553I,

135
54Xe

and 10
5B) and two macroscopic cross sections. One of the macroscopic cross sections accounts for the

effect of several isotopes lumped together, whilst another accounts for all the remaining isotopes from
materials such as cladding and coolant. The homogenized cross sections were calculated using both two
and six neutron energy group structures. For the six group cross sections, the group boundaries were set at:
1.10 · 10−4 eV, 1.40 · 10−1 eV, 6.25 · 10−1 eV, 4.00 eV, 5.53 · 103 eV, 8.21 · 105 eV and 1.96 · 107 eV. The
boundaries for the two group cross sections were set at 1.10 · 10−4 eV, 6.25 · 10−1 eV and 1.96 · 107 eV.
The boundaries of the state parameter domain were chosen such that the cross section representation is
applicable to both day to day reactor calculations and to transient analyses [3]. These intervals are listed in



Table 1. State parameter nominal conditions and boundaries.

State parameter Nominal Min Max

Burnup [MWd/tU] — 0 60 000
Moderator density [g/cm3] 0.713 0.313 1.013
Moderator temperature [K] 579.4 279.4 979.4
Fuel temperature [K] 951.4 291.4 1 651.4
Boron concentration [ppm] 600 1 1 600

table 1.
All the cross sections were represented using hierarchical, multi-dimensional Lagrange interpolating

polynomials as described in [3, 7, 8]. The interpolation was performed on several sparse grids with an
increasing number of sample points in order to investigate how the representation accuracy improves
with the number of samples. The representation accuracy can be characterized by the maximum relative
error δmax and the average relative error δmean. For practical applications, it is required that these errors
do not exceed a specified value that is considered acceptable. In this work, the upper limits for δmax and
δmean were set as 0.2% and 0.05%, respectively. Although the representation method possesses a built-in
way of accuracy assessment, in order to improve the quality of the error characterization, we estimated
δmax and δmean using 4 096 independent and uniformly distributed test samples, calculated at the Sobol’
quasi-random points [12].

Homogenized cross sections exhibit more complex dependence on some state parameters especially
burnup [2]. Therefore in this study, both isotropic and anisotropic sparse grids were used [3, 7, 8]. An
isotropic sparse grid contains the same number of samples in all dimensions. Anisotropic sparse grids
are formed when any dimension in which the cross section has a prominent dependence is allowed to
have more samples in order to improve the accuracy of the representation. The anisotropy of a sparse grid
is described by an anisotropy vector α ∈ Nd , where d is the number of state parameters. The larger the
value of the component αi for a state parameter pi (i = 1, . . . , d), the smaller the number of points that are
sampled for that state parameter. We carried out a study to determine an optimal anisotropic vector that is
suitable for the whole library. As a result of the study, the anisotropy vector α = (1, 2, 2, 2, 2) was chosen,
where the order of the components corresponds to the order of the state parameters in table 1. This choice
of α allows one to have more samples from burnup than from other state parameters.

3. Analysis of the obtained results
Constructing representations of every cross section, reaction type and energy group for all the microscopic
and macroscopic materials would result in a library with a total of 152 two-group and 456 six-group cross
sections. In this work we constructed representations for a subset of homogenized cross sections, which
we considered to be either representative, or playing a prominent role in MOX fuel, or to be the most
challenging. For the sake of briefness, the analysis in this paper is limited to three materials: a macroscopic
one, which accounts for the effect of several isotopes lumped together, and two microscopic cross sections:
239
94Pu and 238

92U. These materials are important for the operation of a reactor core that contains MOX
fuel. For example, the cross sections for the macroscopic material describe the average effect of all the
neutron-nuclear interactions that may occur in a reactor core. 238

92U is an important resonance absorber
which also has the highest number density of all the isotopes in the fuel. 239

94Pu has the highest number
density of all the fissile isotopes in MOX fuel.

Out of all the cross sections represented in our work, we are going to discuss the absorption cross
sections. Neutron absorption is an important neutron-nuclear interaction which controls the rate of fission
in a thermal reactor. The results will be presented for the thermal neutron energy groups, i.e. groups 5 and
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Figure 1. Dependence of the accuracy of the cross section representation on the number of sparse grid
points.

6 for the six-group MOX fuel assembly model and group 2 for the two-group model. The boundaries for
these groups are within the range in which nuclear fission reactions take place inside a thermal reactor core.
We will denote the absorption cross sections for 239

94Pu,
238
92U and the macroscopic material by σ239

a, g(G),
σ238
a, g(G) and Σa, g(G) respectively, where g(G) represents the energy group g for the G-group model,

e.g. σ239
a, 5(6) will be used for the group 5 microscopic cross section for the 239

94Pu in six-group model.
Two and six-group absorption cross sections for 23994Pu,

238
92U and macroscopic material were interpolated

using sparse grids that were constructed hierarchically, using 33, 89, 201, 457, 969 and 2 065 points. The
results for the rate at which the maximal relative error, δmax, decays with the number of sparse grid points1
are shown in figure 1. As expected, the representation accuracy increases with the number of samples,
which means that the method can be used to provide a range of representations, that are optimal in terms
of balance between the accuracy and the number of samples.

Table 2 shows the number of samples that are required in order to obtain the target accuracy for each of
the three cross sections for all the energy groups in both two- and six-group models. One can see from
table 2 that the target accuracy is achieved with less than 1 000 samples in all the cases, which corresponds
to a number of transport code runs acceptable in practice. Moreover, one can see that the thermal cross
sections require more samples than the fast ones in order to achieve a target accuracy. The number of
samples in a sparse grid is connected to the number of basis functions and it reflects the order of the
polynomial of the representation function. The high polynomial order indicates the higher complexity of
the approximation in terms of its deviation from a constant or linear shape. Therefore, numbers in table 2
demonstrate that the complexity of cross section dependencies increases from fast to thermal groups.

The complexity encountered in the construction of a representation for thermal cross sections is
influenced by the degree to which the cross sections vary across the domain. Table 3 shows the magnitude
of the percentage variation of the cross sections estimated with 4 096 independent, uniformly distributed
test samples, normalized to their median values. In the all cases, one can see that the variation of thermal
neutron cross sections is always greater than for the fast neutron cross sections.

As can be seen from figure 1, the representation accuracy for 238
92U is smaller when the thermal

homogenized cross sections are calculated using a six-group model. This pattern of results also applies
to the absorption cross sections for all the neutronically important uranium isotopes. Thus, for uranium
isotopes, the two-group cross sections can be approximated with lower order polynomials. This explains
1 We report and analyze the maximal relative error only because, as our previous studies have demonstrated, it corresponds to
the target accuracy, which is more difficult to meet.



Table 2. The number of sparse grid points required to obtain the target
representation accuracy.

Six-group Two-group

Energy group 1 2 3 4 5 6 1 2

Cross section
σ238
a 89 33 89 33 457 457 89 201

σ239
a 89 89 201 89 969 457 89 969
Σa 33 89 89 201 457 969 33 969

Table 3. Variation of the cross sections around the median value, in percent.

Six-group Two-group

Energy group 1 2 3 4 5 6 1 2

Cross section
σ238
a 11.8 1.6 45.0 5.0 21.5 27.2 12.8 30.4

σ239
a 4.8 0.4 31.6 19.5 56.7 11.8 13.4 120.3
Σa 21.7 10.9 38.5 67.8 61.7 53.2 20.5 72.7

why the traditional methods were successful in representing two-group cross sections for UOX fuel.
One way to explain this shift in complexity is by examining the cross section dependencies on the

individual state parameters. This may be achieved by constructing scatter plots from samples (the sparse
grid or the independent test set) as a function of each of the five state parameters. Our analysis of such
graphs proves that the variation of σ238

a, 6(6) is dominated by the non-linear dependence on the burnup and
the moderator temperature, while σ238

a, 2(2) shows a strong dependence on fuel temperature and moderator
density. This observation can be understood by considering that the calculation of the homogenized cross
sections involves neutron flux weighting. However, the neutron flux in a reactor core is dependent on the
state parameters. Changes in the values of the state parameters affect the neutron distribution in different
energy groups differently. These variations result in different values of the neutron flux that are used for
the weighting process.

Fewer samples are required to reach the target accuracy for σ239
a, 6(6) than for σ239

a, 2(2). However, the
complexity of representing σ239

a for the other thermal energy group, i.e. group 5, is comparable with that
of σ239

a, 2(2) . This can be understood by considering that the cross section σ239
a has a large resonance in the

energy range 1.40 · 10−1 eV to 6.25 · 10−1 eV which coincides with group 5 for the six-group model. As a
result, σ239

a, 5(6) has a higher percentage variation across the state parameter space as compared to σ239
a, 6(6).

Therefore, for the six-group model, the representation error is isolated into a smaller energy range.
The analysis of thermal reactors that are loaded with MOX fuel can be done with better accuracy if the

cross sections are calculated using an energy group structure that removes the complexity of the cross
section dependencies away from the energy range in which fission reactions are most likely to take place
in plutonium. This is done by increasing the number of energy groups. Whilst an increase in the number
of energy groups yields better results for plutonium, this does not hold true for other isotopes. However,
the sparse grid method is still capable of representing these cross sections to an acceptable accuracy.

4. Conclusion
The paper addressed the problem of representing a few selected few-group homogenized neutron cross
sections of a MOX fuel assembly using the sparse grid method. This method utilizes a combination of



sparse grid sampling and hierarchical polynomial interpolation with multivariate Lagrange basis functions.
In order to improve the efficiency of the cross section representation, a mini-study with a goal to find

an optimal (i.e. which can provide the best accuracy for a given number of samples for all cross sections in
the library) sparse grid anisotropy vector has been performed. A candidate vector with an equally reduced
number of samples for all the state parameters, except the burnup, was identified and used through the rest
of this work. Further studies has confirmed that, though different cross sections can exhibit a behavior
dominated by different state parameters, the burnup is a state parameter, importance of which is shared by
all the homogenized cross sections.

The application of the method to the representation of several two- and six-group cross sections has
produced excellent results. Results for the microscopic absorption cross sections for 239

94Pu and 238
92U

and for the macroscopic absorption cross sections are reported and analyzed in this paper. The desired
representation accuracy, δmax = 0.2%, was achieved with less than 1 000 samples which make the method
suitable for practical application. These results are impressive if we consider that the cross sections used
in this work were calculated using intervals of state parameters that are suitable for transient analysis. This
means that the cross sections we interpolated have a more complex dependence on the state parameters
than the cross sections that are usually used for the normal day-to-day reactor operations.

The primary fissile isotope in MOX fuel, 23994Pu, poses a problem when the two-group model is used:
the accuracy of the representation of its thermal group cross section is exceptionally low. Nevertheless,
using the six-group model allows one to palliate the problem by isolating the complexity of the dependence
(and the corresponding representation error) in group 5, thus improving the representation accuracy of the
sixth group, where the nuclear fission reactions are most likely to take place. This does not address all the
limitations of nodal diffusion methods when simulating MOX-fuelled PWR cores, which is an area of
study that spans much wider than just cross section representation.
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