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Abstract. A post-selection technique was introduced by Christandl, König and Renner [Phys
Rev. Lett. 102, 020504 (2009)] in order to simplify the security of quantum key distribution
schemes, yet it has not been worked out in detail for any specific and realistic protocol. Here,
we demonstrate how it can be applied to study the security of the Phoenix-Barnett-Chefles 2000
trine state (PBC00) protocol, a symmetric version of the Bennett 1992 (B92) protocol.

1. Introduction
Quantum key distribution (QKD) enables secure real-time distribution of a cryptographic
key between two parties, Alice and Bob, who are connected by a quantum channel and an
authenticated classical channel in the presence of a competent malicious party, an eavesdropper
called Eve [1]. This technique is based on two laws of quantum mechanics, namely the
uncertainty principle and the no-cloning theorem [1]. The first, and most established, operable
QKD protocol, BB84, was proposed by Bennett and Brassard [2] in 1984, basing on Wiesner’s
idea of conjugate coding [3]. In 1991, Ekert [4] extended the idea by introducing quantum
entanglement and the violation of Bell’s theorem [1]. Ever since, several protocols have been
invented by both theorists and experimentalists. These include: Bennett 1992 (B92) [5], six state
[6], the Scarani-Aćın-Ribordy-Gisin 2004 (SARG04) [7], the differential-phase shift (DPS) [8],
the coherent-one-way (COW) [9] and the Phoenix, Barnett and Chefles 2000 (PBC00) protocol
[10]. The PBC00 protocol is based on the B92 protocol and the main difference between the two
is that the latter uses two states whilst the former uses three states. Consequently, the PBC00
protocol is more symmetrical (in the sense that either Alice or Bob, but not both, can declare
unused observables) and shows lower qubit losses than the B92 protocol.

Since the first unconditional security proof by Mayers [11], various techniques for proving
the security of QKD protocols have been developed [12]. An unconditional security proof is
a proof that considers an unbounded adversary. The construction of security proofs generally
depend on the steps of the protocol and also on their practical implementation. For example,
the unconditional security proof for the BB84 based protocols have long since been introduced
[13]. This is because they share a common property of being symmetrical. However, the security
proofs for the class of distributed-phase-reference (which consist of DPS and COW) protocols



still remain unknown [12], mainly because their construction and encoding deviates from the
usual symmetry that exists in BB84-type protocols [8]. The study of security proofs of QKD
protocols in the asymptotic key length has been studied in several papers [14, 15, 16, 17, 18, 19].

The unconditional security proof of the PBC00 protocol independent of the channel’s qubit
loss rate loss has been given in Ref [20]. The security proof was done by transforming the
protocol to a secure QKD protocol based on the entanglement distillation protocol initiated
by state rotations and a local filtering operation, followed by error correction. In this paper
we compute the secret key rates against coherent attacks for the PBC00 protocol by using the
post-selection technique when given a finite amount of resources.

In order to prove security against coherent attacks, one can use either the de Finetti theorem
[21] or the post-selection technique [22]. The former technique was developed by Renner where
one uses the fact that a permutation invariant state is close to an independent and identically
distributed (i.i.d) state [23]. The latter technique gives a way to bound the diamond distance
between two maps from a quantity evaluated for a very specific quantum state, called a “de
Finetti state”. The two techniques are independent, therefore one can use either of them to
prove security of a protocol provided the protocol is permutation invariant [22]. However, it has
been shown that the post-selection technique gives better bounds than the de Finetti theorem
[16], so one can always proceed by using the post-selection technique. Moreover, the symmetry,
hence permutation invariance that exists in the PBC00 protocol enables us to directly apply the
post-selection technique.

2. PBC00 QKD protocol
The PBC00 protocol proceeds as follows:

Preparation and Measurement. Alice prepares randomly with equal probability each qubit in
one of the mutually non-orthogonal states {|ψ1〉, |ψ2〉, |ψ3〉} and encodes her bit on the states

as in the original B92 protocol [24]. These states are defined as |ψ1〉 ≡ 1
2 |0x〉 +

√
3

2 |1x〉, |ψ2〉 ≡
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2 |0x〉 −

√
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2 |1x〉 and |ψ3〉 ≡ |0x〉, where {|0x〉, |1x〉} is the X basis of a qubit state. The Z basis

is defined by {|jz〉 ≡ [|0x〉 + (−1)j |1x〉]/
√

2} where (j = 0, 1). She creates a large trit string r
and a large bit string b of the same length N . For each ri, the ith trit value of the trit string r,
she chooses the set {|ψ1〉, |ψ2〉} (if ri=0), {|ψ2〉, |ψ3〉} (if ri=1), and {|ψ3〉, |ψ1〉} (if ri=2). If the
ith bit value bi is 0, she prepares the first state of the chosen pair, however if the bit is 1, she
prepares the second state. Alice sends all the prepared states to Bob.

On the receiving side, Bob performs measurements on each qubit he receives. These
measurements are described by the POVM

{2
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|ψ̄1〉 ¯〈ψ1|,

2

3
|ψ̄2〉 ¯〈ψ2|,
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3
|ψ̄3〉 ¯〈ψ3|}. (1)

These states can be defined as |ψ̄1〉 =
√

3
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1
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3
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2 |1x〉 and ¯|ψ3〉 = |1x〉 and

are orthogonal to |ψ1〉, |ψ2〉 and |ψ3〉 respectively.

Sifting. In this sifting step, both parties agree which signals to discard. Bob announces when
all his measurements are done, and Alice in turn announces the trit string r. Bob regards the
ith measurement outcome |ψ̄1〉 (if ri = 0), |ψ̄2〉 (if ri = 1), and |ψ̄3〉 (if ri = 2) as the bit value
0. Bob also considers |ψ̄2〉 (if ri = 0), |ψ̄3〉 (if ri = 1), and |ψ̄1〉 (if ri = 2) as the bit value
1. All other events are considered as inconclusive and they discard the data. Bob announces
whether his measurement outcome is inconclusive or not. Alice and Bob keep the data when
Bob’s outcome is conclusive, discarding the rest.



Parameter estimation. The role of parameter estimation is to decide whether the input given to
the protocol can be used to distill a secret key. On the conclusive measurements, Alice randomly
chooses chooses m < N samples as test bits in order to estimate the Quantum Bit Error Rate
(QBER) on the code bits, and announces her selection to Bob. If the error rate is small, they
use the post-processing methods to extract the key otherwise if the error rate is too high Alice
and Bob abort the protocol. If the statistics λm are obtained by measuring m samples of ρAB
according to a POVM with d possible outcomes and if λ∞(ρAB) denotes the perfect statistics
in the limit of infinite measurements, then for any state ρAB

Γξ := {ρAB : ||λm − λ∞(ρAB)|| ≤ ξ(εPE,mi)}. (2)

Γξ is a set of states from which a key is extracted with a non-negligible probability. By the law
of large numbers [23]

ξ(εPE,mi) :=

√
ln(1/εPE) + 2 ln(m+ 1)

2m
. (3)

where εPE,mi is the measured QBER in the direction |ψ1〉, |ψ2〉 and |ψ3〉.

Error correction. In this step Alice and Bob apply a one-way error correction protocol by
using authenticated classical communication channel to correct their strings. As result they will
exchange LEC bits on the channel and is given as

LEC = fECnh(Q) + log2

(
2

εEC

)
, (4)

where n is the length of the raw key, fEC is a constant larger than 1 which represents a deviation
of the real protocol from the asymptotic one, h(Q) = −Q log2Q − (1 − Q) log2(1 − Q) is the
binary Shannon entropy and Q is the QBER and εEC is the error in error correction step.

Privacy amplification. In this step, the quantity of the correct information which the
eavesdropper may have obtained about Alice’s and Bob’s reference raw key is minimized by
the use of a two-universal hash function resulting in a string called a key [23].

3. Security against collective attacks
The PBC00 protocol belongs to the class of prepare and measure schemes. It employs
polarization-encoded qubits to transmit information. This simply involves a sequential exchange
of n signals. Based on that, Alice and Bob’s systems can be described by an n-partite density
operator which is permutation invariant. This allows us to analyze the protocol based on the
fact that it consists of states which are independent and identical copies of each other. More
formally, the states |ψ1〉, |ψ2〉 and |ψ3〉 all occur with the same probability.

The aim of the eavesdropper is to extract as much classical information as possible from
the strings that are held by Alice and Bob. In the PBC00 protocol, the probability that Eve
maximizes her probability of correctly distinguishing between the exchanged states is expressed
as PD =

∑
iXiP(i,i), where PD is the discrimination probability, Xi represents the a priori

probability of the state |i〉 and P(i,i) denotes the probability that the state |i〉 is sent and that
the Eve’s measurement reveals the result i. For symmetric states, the maximum discrimination
probability is equal to Pmax

D = 2/3. Based on this probability, without losing generality the

number of states that can be unambiguously discriminated satisfies the inequality N ≤ 2
3

(
n+d−1
n

)
,

where d is the photon Hilbert space i.e., d=2 for the PBC00 protocol. This gives us the necessary
condition for unambiguous discrimination between N states each spanning a d-dimensional space
when given n-copies of the state. The dimension of the symmetric subspace, gn,d can be expressed



as gn,d = 2
3

(
n+d−1
n

)
≤ 2

3(n+ 1)d−1. Since the PBC00 protocol uses symmetric encoding as in the
BB84 protocol, it is then possible to parametrize the most general attacks. This leads to the
unconditional security. The expression for the secret key rate rN,col against collective attacks is
written as

rN = rN,col −
2(d4 − 1) log2(N + 1)

N
. (5)

The bound for collective attacks for the PBC00 protocol is expressed as

ε ≤ 2

3
· 2−cδ2N+(d4−1) log2(N+1) (6)

and is calculated via the total security parameter ε defined later in (13), where c for (c ≥ 0) is
the cost of reducing the key size by fraction δ [22].

4. Finite key analysis
Scarani and Renner have provided a general security formula to calculate the lower bound on
the secure key rate of the BB84 protocol [14]. This has been followed by the derivation of many
bounds for different protocols based on the BB84 encoding. In the same spirit, we use this
intuition of finite size key analysis to derive the upper bound for the secure key rate against
collective attacks for the PBC00 protocol.

Let ρKE be the quantum state that describes the classical key K of length ` distilled at the
end of the run of the QKD protocol. Then for any ε ≥0, a final key K is said to be ε-secure
with respect to an adversary Eve if the key ρKE satisfies

min
ρE
||ρKE − τK ⊗ ρE ||1 ≤ ε, (7)

where || · ||1 is the trace distance, ρKE =
∑

k∈K Pk(k)|k〉〈k| ⊗ ρkE where Pk is the probability
distribution of the key K and {|k〉}k∈K is an orthonormal basis of some Hilbert space Hk,
τK =

∑
k∈K Pk

1
|K| |k〉〈k| is a fully mixed state on Hk, ρE is the state held by an eavesdropper

[23]. The parameter ε represents the maximum failure probability of the key extraction
procedure. Therefore, the classical key K is indistinguishable from a random and uniform
key with probability 1− ε.

In order to arrive at our security bounds for the PBC00 protocol, we follow closely the
definitions found in Ref. [23] and the formalism in Ref. [14]. If H denotes a finite-dimensional
Hilbert space and P(H) is the set of positive semidefinite operators on H then the set S(H) :=
{ρ ∈ P(H) : trρ = 1} represents normalized states and the set S≤(H) := {ρ ∈ P(H) : trρ ≤ 1}
represents the set of sub-normalized states on the Hilbert space. Let ρAB ∈ S≤(HAB) and
σB ∈ S(HB), then the min-entropy of A conditioned on B of the state ρAB relative to σB is
defined as

Hmin(A|B)ρ|σ := max
σ

sup{λ ∈ R : ρAB ≤ 2−λ1A ⊗ σB}, (8)

where the maximum is taken over the states σB ∈ S(HB). Furthermore we define,

Hmin(A|B)ρ := max
σB∈S(HB)

Hmin(A|B)ρ|σ. (9)

For some ε ≥ 0, it has been found that the achievable length of secret key can be expressed as
[25]

` ≤ H ε̄
min(Xn|En)− LEC − 2 log2(1/ε), (10)

where ε̄ = (ε/8)2 is the smoothing parameter. In above expression, H ε̄
min(Xn|En) gives the

amount of a key that can be extracted from a string X when given E, the uncertainty of the
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Figure 1. (Color online) Upper bound
on the secret key fraction, r, for the
finite PBC00 protocol as a function of
the exchanged quantum signals N for bit
error rates Q= 0.5%, 2%, 2.5%, 3.5%,
ε = 10−5 and εEC = 10−10.
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Figure 2. (Color online) Upper bound
on the secret key fraction, r, for the
finite PBC00 protocol as a function of
the exchanged quantum signals N for bit
error rate Q= 2.5%, ε = 10−5, εEC =
10−10 for (a) collective attacks (b) post-
selection technique.

adversary about X measured by using the smooth min-entropies. The smooth min-entropy of
the state shared between Alice and the eavesdropper is lower bounded as

H ε̄
min(Xn|En) ≥ n( min

σXE∈Γ
H(X|E)−4), (11)

where 4 = (2 log2 d + 3)
√

[log2(2/ε̄)]/n. For a finite number of signals, the achievable secure
key rate was derived to be [14]

r =
n

N

[
min
σXE∈Γ

H(X|E) +4(n)− LEC

]
+

2

N
log2(2εPA). (12)

The total security parameter, ε of a QKD scheme depends on the sum of probabilities of failures
of the classical post-processing protocols which can be written as

ε = ε̄+ εPA + εEC + εPE, (13)

where ε̄ denotes the error in the smooth min-entropy. In the PBC00 protocol, the secret key
rate is obtained by measuring both the bit (e1) and phase error (e2) rates. The secret key rate
for the bit error rate and the phase error rate is expressed as pc[1− h(e1)− h(e2)], where pc is
the probability of the conclusive outcome. It has been found that the protocol is secure for a
bit error rate of up to 9.81%. For an asymptotic formula e1 = e2 = Q, the lower bound for the
protocol can be expressed as

H(X|E) = pc[1− h(Q)− h(
5

4
Q)], (14)

where H(X|E) is evaluated by using the QBER from the parameter estimation step.
In figure 1, we show the variation of the secret key rate r, with the number of signals N ,

which Alice sends to Bob when given a finite amount of resources. We found that the minimum
number of signals required in order to extract a reasonable amount of secret key compares with



those of the BB84 protocol [14]. In figure 2, we show the variation of the secret key rate r, with
the number of signals N for bit error Q = 2.5%. In this figure, it can be observed that the post-
selection technique gives optimal bounds when a finite amount of signals are used. Therefore,
for a large number of signals the optimal attack is close to a collective attack. This shows that
this technique is a powerful tool which can be considered in simplifying security proofs and also
leads to improved key rates.

5. Conclusion
We have shown how one can apply the finite-key analysis formalism and the results of the
post-selection technique in order to find the secret key rates for finite amount of resources.
We have shown that the secret key rate largely depends on the number of signals sent. In
particular, reasonable key rates are obtained for N ≈ 105-106 signals. We have also shown
that the post-selection technique leads to optimal security bounds for the PBC00 protocol.
These results also appear in the longer version of our paper in Ref [26]. Therefore, in the
absence of bounds for collective attacks one can appeal to the bounds given by the post-selection
technique. These results can be applied to other protocols which are symmetric as well. This
study has demonstrated the feasibility of applying the post-selection technique to the PBC00
QKD protocol, which is a specific and realistic protocol.
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