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Abstract. The total angular momentum of a photon field can be decomposed canonically
into spin and an orbital parts. Methods are now available for measuring the orbital angular
momentum of light. These allow measurement the orbital angular momentum of a single photon,
as well as of a beam. Little use has been made of these techniques in astrophysics. If used, they
might unlock an as yet untapped source of information about distant sources.

Orbital angular momentum can be produced in a beam of light of known polarisation by
passing the beam through a spiral phase plate in the direction of its with optical axis. It has been
suggested that inhomogeneous media may produce orbital angular momentum in an analogous
way. A simple spiral phase plate model may thus be useful in studying plasma vortices in cosmic
structures such as astrophysical jets, AGN’s, turbulent plasma in galaxies and galaxy clusters,
and the vorticity field of the CMB. This paper discusses some general features of POAM, gives
a mathematical description of the action of a spiral phase plate and shows how it might be used
as a model in astrophysical studies.

1. Introduction
Electromagnetic waves have both spin and orbital angular momentum. The spin is related to
the polarisation, and the orbital angular momentum is related to the surfaces of constant phase
of the electromagnetic wave.

Recognition in the 1990s that light beams with an helical wave front have orbital angular
momentum has been exploited in applications ranging from optical manipulation to quantum
information processing. Wang et al. (2012) who have demonstrated that four light beams
with different values of orbital angular momentum are able to transmit data at a capacity of
2.56 Tbit/s.This suggests that orbital angular momentum could be a useful degree of freedom
for increasing the capacity of free-space communications. It may also provide a new source of
information for astronomy and astrophysics.

Various methods have been suggested to measure POAM in astrophysics (Leach et al 2002).
These range from measurement of the orbital angular momentum of a single photon to measuring
the orbital angular momentum of beams of photons. Figure 1 shows the surfaces of constant
phase of a beam of light in different states of orbital angular momentum. Such a beams can
be produced by a spiral phase plate, shown in Figure 2. Harwit (2003) conjectured that the
effect of an inhomogeneous medium on light might be modelled in this way. In this paper
we consider a model of the spiral phase plate constructed using a geometric method due to
Guillemin and Sternberg (1984). We setup the matrix that describes the propagation of a beam
of light through this optical system. The matrix provides a geometrical optics description of the



Figure 1. Different columns show
the beam helical structures, phase
fronts, and corresponding intensity
distributions (Wikipedia).

Figure 2. Photon orbital angular
momentum (POAM) produced by a
spiral phase plate (Harwit 2003).

beam. It therefore does not contain any phase information. To incorporate phase information we
construct an associated integral, and reconstruct the wave using a method due to Haus (1984).
The POAM information is extracted using a method due to Elias (2008). Some of these results
are reported in the appendix to this paper.

2. Ways to calculate POAM
There are three main ways to calculate POAM. These are the paraxial approximation, the
quantum mechanical treatment, and the Helmholtz approach. All three yield useful information
about POAM. The paraxial approximation shows that the surfaces of constant phase are
responsible for transferring orbital angular momentum from the photons to the medium
through which they propagate. The quantum mechanical treatment shows that the orbital
angular momentum is transferred in quanta. The Helmholtz treatment shows that when a
beam propagates through empty space, the rotational part of the electric field of the beam
carries information about the orbital angular momentum. We are currently implementing a
geometrically based method, described by Guillemin and Sternberg (1984).

At each point on the spiral phase plate construct the matrix that describes the action of the
spiral phase plate on the beam using the geometrical optics approximation. This matrix is an
element of Sp(4, R), the group of 4x4 symplectic matrices with real coefficients. These matrices
together completely determine the outgoing directions of the rays that constitute the beam. We
compute the corresponding Fresnel integrals, which form a metaplectic group G on a Hilbert
space. On integration, these produce the change in phase of the beam as it passes through the
spiral phase plate. It can be shown that there is an homomorphism from G to Sp(4,R) which is
2 to 1. G thus provides a double cover of Sp(4,R).

The model of Guillemin and Sternberg (1984) uses a scalar field to model light. To model



POAM we will need to use a vector field model. Using a method by Haus (1984) we are able
to reconstruct the electric field of the outgoing beam. Once we have the electric field of the
outgoing beam we are finally ready to extract the POAM, for which we follow the method of
Elias (2003). Some relevant calculations are displayed in the appendix to this paper.

3. Application
Harwit (2003) suggests that a turbulent medium with discontinuities can be regarded as a screen
of randomly distributed spiral phase plates. We would like to model this screen. Discontinuities
in the immediate surroundings of an object, or in the medium between the source and the
telescope, produce orbital angular momentum in the photon beam as it traverses the medium.
The propagating electromagnetic wave consists of m intertwined helical wave fronts. m is called
the winding number. The multi-pole axis of the detected radiation lies along the line of sight.
This makes it possible in principle to measure the POAM of the beam. We wish to model plasma
vortices in cosmic structures such as galaxies and galaxy clusters. Plasma Vortices are believed
to exist in Astrophysical Jets. Sources of Astrophysical Jets include Extragalactic Radio Sources
powered by AGNs, Bipolar Flows from Young Stellar Objects, Jets from Young Binary Neutron
Stars and or Black Hole Candidates, and Jets inside Planetary Nebulae, illuminated by a young
or forming White Dwarf (Kundt 1996). It is anticipated that they may be studied through
POAM.

4. Conclusion
The matrix that describes the spiral phase plate in the geometrical optics approximation is
equation (10) in the appendix. Since there is one at each point on the spiral phase plate, this
system may be described in terms of a principal bundle. The corresponding Fresnel integrals
that describe the beam passing through the spiral phase plate are of the form of equation (11)
in the appendix. We have written a program that calculates the matrix and integrates the
corresponding integral at each point on the phase plate. We have written another program that
reconstructs the electric field of the out going beam. We are in the process of writing a program
that calculates the photon orbital angular momentum of the outgoing beam. We will then be
in a position to model the screen of spiral phase plates.

Appendix
1. Geometrical Optics
In linear optics we assume the index of refraction is constant across refracting surfaces. In
geometrical optics we assume it is a smoothly varying function. In Gaussian optics we want to
trace the path of a beam through an optical system. We can do this by studying rays that are
coplanar. We then only need to compare the direction of the light after it exits the optical system
with the direction of the incoming ray. Define the reference plane as a plane perpendicular to
the optical axis (z axis). We can then completely specify the direction of the light with q, its
height above the z axis, and θ, the angle it makes with the z axis. Then for a simple optical
system we may choose two reference planes at z1 and z2, positioned respectively behind and in
front of the system, we only need to find

u′ =

(
q2
θ2

)
(1)

as a function of

u =

(
q1
θ1

)
(2)



Taking the index of refraction into account, put p = nθ, then since we are only interested in the
linear terms, we want (

q2
p2

)
= M

(
q1
p1

)
(3)

In Gaussian optics, there are only three ways that an optical system can affect the beam, namely
transmission, refraction or reflection. We do not consider reflection. In linear optics, we assume
that the transformations are linear from Gaussian optics and drop the rotational symmetry.
We thus need four variables, two to describe where the beam intersects the reference plane and
another two to define the direction of propagation. Therefore, let z1 and z2 be two reference
planes and then a ray will be completely defined by

u1 =


qx1

qy1
px1

py1

 (4)

and

u2 =


qx2

qy2
px2

py2

 (5)

where the symbols have the usual meaning. To describe the effect of the system on the ray, we
need a 4× 4 matrix M such that

u2 = Mu1 (6)

In this text we are not going to follow the convention established by Guillemin and Sternberg
by combining the angle of incidence and the index of refraction under the symbol p. We are
going to use the angle and the index of refraction explicitly.

1.1. 4× 4 Linear Optics calculation of the Spiral phase plate
The progression of a beam passing through the spiral phase plate can be expressed in terms
of three separate propagation matrices. The first describes incidence on the base of the spiral
phase plate,

M1 =


1 0 0 0
0 1 0 0
0 0 n1

n2
0

0 0 0 n1
n2

 (7)

The second describes propagation through the medium

M2 =


1 0 d+ s(ϕ) 0
0 1 0 d+ s(ϕ)
0 0 1 0
0 0 0 1

 (8)



The final matrix describes the beam exiting the spiral phase plate,

M3 =


1 0 0 0
0 1 0 0
0 0 n2

n1
0

0 0 0 n2
n1

 (9)

Therefore the matrix that describes the action of the system in the linear optics approximation
is the product M = M3M2M1 or

M =


1 0 (d+ s(ϕ))n2

n1
0

0 1 0 (d+ s(ϕ))n2
n1

0 0 1 0
0 0 0 1

 (10)

1.2. Wave Optics
The prescription in Guillemin and Sternberg (1984) then yields the following integral that
corresponds to our matrix,

(Fc1)(q2) = exp(−iπ/4)|(dn2/n1)2/λ|−1/2
∫
c1(q1)exp[−iπ(q1 − q2)2/λ(dn2/n1)

2]dq1 (11)
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