SAIP2014

Contribution ID: 179

Type: Oral Presentation

Octupole correlations and Collective Couplings in the rare earth nucleus ¹⁵⁴Dy

Tuesday, 8 July 2014 11:30 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

There is currently less information available on the structure of ¹⁵⁴Dy at low spins. The question still remains whether at low spins the structure exhibits permanent octupole deformation [1] or aligned tidal wave octupole phonons [2]. Intermediate spins of the nucleus ¹⁵⁴Dy were populated via the ¹⁵⁵Gd (3He, 4n) ¹⁵⁴Dy reaction at 45 MeV at iThemba LABS using AFRODITE array spectrometer. The even-even nucleus ¹⁵⁴Dy with 6 neutrons and 2 protons outside the closed shell is nearly spherical. The N = 88 isotones have remarkable features; They are at a peak in the $|M(E3)| < sup>2 </ sup> transition strength of 0 < sup>+ </ sup> < sub>1 </ sub> <math>\rightarrow$ 3 < sup>- </ sup> < sub>1 </ sub> > 3 < sup> - </ sup> transitions for even-even nuclei as a function of neutron number usually called octupole vibration [34]. This was first stated by Chasman theoretically [1] whereby the first excited states in some nuclei have an octupole deformed first excited state with a quadruple deformation in the ground state and shown experimentally for ¹⁵⁴Gd₈₈ [4]. The strong E3 properties have been described and explained as due to the nearness of &Delta J^{&pi}=3⁻ shell model orbits to the Fermi surface. They also have very strong E0 transitions from the band built on the 0 ⁺₂ states to the ground state bands [3, 5]. The measurements we have made on ¹⁵⁴Dy are motivated by the findings from our studies of the isotones ¹⁵²Gd and ¹⁵⁰Sm from [6] where we observed octupole correlations between the 0 ⁺₂ states and the lowest-lying negative parity band, commonly known as the octupole band.

References

[1] R. R. Chasman, Phys. Rev. Lett. 42, 630 (1979).

[2] S. Frauendorf, Phys. Rev. C77, 021304(R) (2008).

[3] S. P. Bvumbi et al., Phys. Rev. C 87, 044333 (2013).

[4] S P Bvumbi, "Spin and Parity Assignment in 152Gd Investigating Octupole Structures"; MSc thesis, University of Western Cape (2008).

[5] S. Frauendorf, Y. Gu, J. Sun, Tidal waves as yrast states in transitional nuclei (2007).

[6] S. P. Bvumbi, "Investigation of octupole correlations and collective couplings in the rare earth nucleus 150Sm" PhD thesis, University of Johannesburg, (2013).

Apply to be
 considered for a student
 award (Yes / No)?

yes

Level for award
 (Hons, MSc,
 PhD)?

MSc

Main supervisor (name and email)
and his / her institution

SUZAN PHUMUDZO BVUMBI University of Johannesburg suzan@tlabs.ac.za

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Primary author: Mr ZIMBA, George (University of Johannesburg)

Co-authors: Dr LAWRIE, Elena (iThemba LABS); Prof. SHARPEY-SCHAFER, John F (UWC); Dr LAWRIE, Kobus (iThemba LABS); Dr MASITENG, Paulus (University of Johannesburg); Dr JONES, Pete (iThemba LABS); Mr MAJOLA, Siyabonga (UCT/ iThemba Labs); Ms BVUMBI, Suzan Phumudzo (University of Johannesburg); Mr DINOKO, Tshepo (iThemba Labs)

Presenter: Mr ZIMBA, George (University of Johannesburg)

Session Classification: NPRP

Track Classification: Track B - Nuclear, Particle and Radiation Physics