SAIP2014

Contribution ID: 452

Type: Oral Presentation

Residual stress in polycrystalline thin Cr films deposited on fused silica substrates

Wednesday, 9 July 2014 14:40 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

The Néel temperature (<i>T</i>_N) in thin film Cr coatings is strongly influenced by dimensionality effects, as well as strain and stress [1]. In an investigation of Cr thin films with thickness (<i>t</i>) varied between 20 and 320 nm deposited on fused silica substrates, the <i>T</i>_N values obtained from resistivity measurements indicate an increase with thickness as expected [1]. However, it is noted that the <i>T</i>_N \approx 460 K obtained for the <i>t</i> = 320 nm sample, is considerably higher than the transition temperature of 311 K obtained in bulk pure Cr. This behavior is unexpected, but incidentally corresponds with <i>T</i>_N = 475 K obtained for the CSDW-P Néel transition in bulk Cr when influenced by stresses introduced by cold working [3,4]. Since stresses are well known to influence the physical properties of materials [1,2], amongst others the magnetic properties, this study is now extended to investigations of the in-plane stresses in these thin films. This is done using the specialised X-ray diffraction sin²&psi-method [2,5,6]. With this technique, variations in the lattice plane spacing is accurately determined from the precisely measured (310) Bragg peak position as function of systematically increased tilt angles, &psi, from the surface normal to as close as achievable to the in-plane direction. The in-plane residual strain present in the coating (&epsilon) is determined from the slope of a linear plot through the fractional change in the plane spacing (or Bragg peak position) versus sin²&psi plots. Residual stress (&sigma) are calculated from the &epsilon versus sin²&psi data by incorporating the elastic properties of the coating material. The results indicate tensile stresses in all the samples. Results will be used to correlate the <i>T</i>_N values to the stresses in the coatings. References:

[1] Zabel H 1999 <i>J. Phys. Condens. Matter</i> 11 9303

[2] Genzel CH 2004 <i>J. of Neutron Research</i> 12 233

[3] Fawcett E 1988 <i>Rev. Mod. Phys.</i> 60 209

[4] Prinsloo ARE et al. 2010 <i>J. Magn. Magn. Mat.</i>> 322 1126

[5] Society for Automotive Engineering, Residual Stress Measurement by XRD, 2nd edition 1971 SAE J748a

[6] Noyan IC, Cohen JB, Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York, 1987

Apply to be
 considered for a student
 award (Yes / No)?

YES

Level for award
 (Hons, MSc,
 PhD)?

MSc

Main supervisor (name and email)
and his / her institution

Dr C J Sheppard cjshepppard@uj.ac.za University of Johannesburg

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

yes

Primary author: Ms MUDAU, Z P (University of Johannesburg)

Co-authors: Prof. VENTER, A M (NECSA); Prof. PRINSLOO, A R E (University of Johannesburg); Dr SHEPPARD, C J (University of Johannesburg); Prof. FULLERTON, E E (University of California, San Diego); Mr NTSOANE, T P (NECSA)

Presenter: Ms MUDAU, Z P (University of Johannesburg)

Session Classification: DPCMM1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials