$\mathbf{A} \rightarrow \mathbf{Z}\mathbf{h} \rightarrow \ell^+ \ell^- \tau^+ \tau^-$

Analysis overview and motivation for the search of the

pseudoscalar Higgs with the ATLAS experiment

Guillermo Nicolas Hamity

Supervisor: Trevor Vickey

University of the Witwatersrand

SAIP - July 10, 2014

SM Higgs discovered (125 GeV) \rightarrow is the Higgs sector minimal? is it extended?

• SM Higgs sector has experimental constraine:

$$\rho \equiv m_W / (m_Z \cos \theta_W) \rightarrow 1$$

- 2HDM: Simple extension by adding complex Higgs doublet, SU(2), satisfying $\rho \rightarrow 1$
- Assumptions:
 - CP-conservation
 - Softly broken \mathcal{Z}_2 symmetry ($\Phi_1 = -\Phi_1$)
 - Electroweak symmetry breaking, and $v_1v_2 \neq 0$

```
Resulting 8 fields:
3 give mass to W<sup>±</sup> and Z bosons,
```

5 physical scalar ("Higgs") fields 2CP-odd pseudoscalar $\rightarrow A$ h (light) $m_h < m_H$ H (Heavy) 2 scalar charged $\rightarrow H^{\pm}$

Motivation for 2HDM search at High-Lumi with ATLAS

• ATLAS Note motivates 2HDM searches at high luminosity: Beyond-the-Standard-Model Higgs boson searches at a High-Luminosity LHC with ATLAS. *ATL-PHYS-PUB-2013-016*

- Sensitivity study done for high Luminosity (300 and 3000 fb⁻¹ pp, \sqrt{s} = 14 TeV)
 - $\circ \ A \to Zh \to \ell \ell bb$
 - $\circ \ H \to \mu \mu.$
 - $H \rightarrow ZZ' \rightarrow 4\ell$
- Assumptions that are made:
 - $m_h = 125$ GeV.
 - $m_A = m_H = m_{H^{\pm}}$

Mass splitting disfavoured by considering potential parameters and changes in ρ .

Degrees of freedom:

$$m_A \quad tan\beta \quad \cos(\beta - \alpha) \to 0$$

 $\begin{array}{l} \mbox{Generally} A \to Zh \mbox{ is dominant decay mode of } A \mbox{ in any 2HDM for } m_h + m_Z < m_A < 2m_{top} \,. \end{array}$

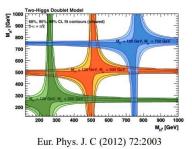
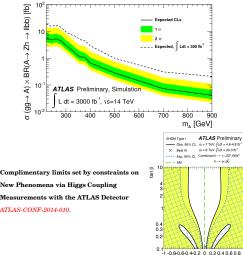
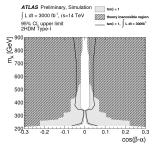




Figure: Constraints in the 2HDM

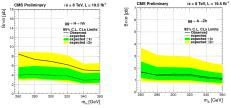
Exclusion zone if no signal on the $\cos(\beta - \alpha)$ -95% CL upper limits for $m_A \in$ 220-900 GeV for m_A plane for $\tan\beta = 1$ are shown. 3000 fb^{-1} .

Ref: ATL-PHYS-PUB-2013-016.

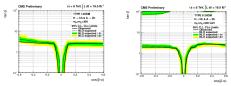
Measurements with the ATLAS Detector ATLAS-CONF-2014-010.

 $\cos(\beta - \alpha)$

Results from CMS search for extended Higgs sectors

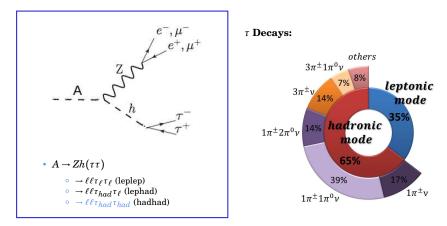

CMS Note on BSM search results: Search for extended Higgs sectors in the $H \rightarrow hh$ and $A \rightarrow Zh$ channels in $\sqrt{(s)} = 8$ TeV pp collisions with multileptons and photons final states CMS-PAS-HIG-13-025

- Search for $H \to hh$ and $A \to Zh$: 19.5 fb⁻¹; $\sqrt{s} = 8$ TeV.
- CL limits in the range 260-360 GeV → consistent with the SM.
- Significant portions of 2HDMs parameter excluded.
- Final states considered:


$Z \rightarrow {}^{\setminus h \rightarrow}$	WW^*	ZZ^*	ττ	γγ	bb
ll	\checkmark	\checkmark	√ ∅	\checkmark	X 🗹
qq	х	\checkmark	х	Х	Х
vv	х	\checkmark	х	Х	X 🗹

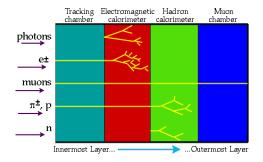
 $A \rightarrow Zh$ ATLAS search:

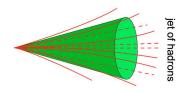
CMS inclusive search strategy vs ATLAS fully reconstructed .

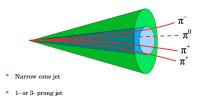


Observed and expected limits with 1 and 2- σ bands for $H \to hh$ (left) and $A \to Zh$ (right) in terms of $\sigma * Br$ based on multilepton and diphoton channels.

Observed and expected limits with 1 and 2- σ bands on combined signal for H and A in Type-I (left), and Type-II (right) 2HDMs ($m_H = m_A = 300 GeV$). Regions below limits are excluded.


• $A \rightarrow Zh$ analysis searching for $m_A \in (220, 1000)$ GeV at 8TeV pp collisons with 20 fb⁻¹.


Documentation: HSG6/notes/HiggsToHiggs/AZh/Internal_AZh_lltautau


The Fake Tau Problem

Different decays in ATLAS detector:

Taus never make the inner-detector (can only look at decays) Non-Tau Jet Tau Jet

Processes with 2 ℓ and 2 taus (had)

Processes with 2ℓ and 2 jets serve as irreducible backgroung

ZZ ZZ Z+jets wz Z+jets Z+jets ZZ Z+jets ZZ Z+jets wz wz Z+jets Z+jets ZZ ZZ ZZ ZZ Z+jets Z+jets wz t+jets Z+jets ZZ ZZ ZH ZZ A Z+jets Z+jets Z+jets Z+jets Triboson ZZ Z+jets Z+jets ZZ ZZ Z+jets wz Z+jets Z+jets Z+jets wz Z+jets wz Z+jets Z+jets tī Z+jets Z+jets wz ZZ Z+jets ZZ Z+jets ZZ Z+jets wz Z+jets Z+jets Z+jets wz *tī* Z+jets Z+jets Z+jets ZZ Z+jets Z+jets Z+jets Z+jets Z+jets ZZ Z+jets ZZ $t\bar{t}$ ZZ Z+jets ZZ Z+jets Z+jets ZZ WW Z+jets t+jets ZZ ZZ Z+jets wz Z+jets t+jets ZZ ZZ tī Z+jets ZZ Z+jets ZZ ZZ WW Z+iets t+iets ZZ ZZ Z+iets Z+iets ZZ **ZZ** Z+jets Z+jets t+jets Z+jets Z+jets Z+jets Z+jets Z+jets Z+jets Z+jets *a* WW Z+jets Z+jets ZZ Z+jets Z+jets Z+jets Z+jets WW ZZ ZZ Z+jets Z+jets Z+jets Z+jets *ā* Z+jets Z+jets WW Z+jets Z+jets ZZ Z+jets Z+jets

Preselection of HadHad channel

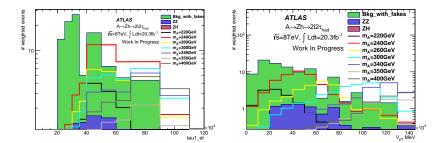
Event Preselection for hadronic channel:

- Single lepton triggers.
- Leptons: 2 loose ℓ SF, OS Z mass window: $80 < m_{ll} < 100$ GeV Isolation (ptcone40/ $p_T < 0.2$ and etcone20/ $p_T < 0.2$)
- Taus: 2 loose τ_{had} muon and electron vetos H mass window: 75 < m_{ll} < 175 Gev.
- Events with additional light leptons or $\tau_{had-vis}$ are discarded.

Background Monte Carlo:

- Z+jets (DY)
- · Diboson: ZZ,WZ,WW
- Tribozon: WWW*,ZWW*,ZZZ*
- Top: $t\overline{t}$, tW, $t\ell$, $t\overline{t}Z$
- · SM assosiated Higgs production: ZH

10 Signal Mass points (in GeV): 220,240,260,300,340,350,400,500,800,1000

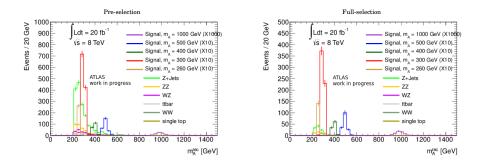

Had-had optimization

Discriminating variables are shown below after pre-selection.

Further optimization done by maximising signal significance at every mass point.

Performed a scan of the significance defined as

$$Sig = \sqrt{2 \cdot \left((S+B) \cdot \ln\left(1+\frac{S}{B}\right) - S \right)}$$


are due to jets faking taus

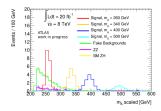
ZZ ZZ Z+jets wz Z+jets Z+jets ZZ Z+jets ZZ Z+jets wz wz Z+jets Z+jets ZZ ZZ ZZ ZZ Z+jets Z+jets wz t+jets Z+jets ZZ ZZ ZH ZZ A Z+jets Z+jets Z+jets Z+jets Triboson ZZ Z+jets Z+jets Z+jets ZZ ZZ Z+jets wz Z+jets Z+jets Z+jets wz Z+jets wz Z+jets tī Z+jets Z+jets wz ZZ Z+jets ZZ Z+jets ZZ Z+jets wz Z+jets Z+jets Z+jets wz tī Z+jets Z+jets Z+jets **ZZ** Z+jets Z+jets Z+jets Z+jets Z+jets ZZ $t\bar{t}$ ZZ Z+jets ZZ Z+jets Z+jets ZZ WW Z+jets t+jets ZZ ZZ Z+jets wz Z+jets t+jets ZZ ZZ tī Z+jets ZZ Z+jets ZZ ZZ WW Z+jets t+jets ZZ ZZ Z+jets Z+jets ZZ **ZZ** Z+jets Z+jets t+jets Z+jets Z+jets Z+jets Z+jets Z+jets Z+jets Z+jets *i* WW Z+jets Z+jets Z+jets Z+jets Z+jets Z+jets WW ZZ ZZ Z+jets Z+jets Z+jets Z+jets # Z+jets Z+jets WW Z+jets Z+jets ZZ Z+iets Z+iets

Full selection for Hadhad channel

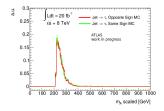
Full Selection

- The leading $\tau_{had-vis}$ is required to have $E_t > 35$ GeV
- For events with $m_A \leq 400 \text{ GeV}, Z p_T > (0.64 m_A 131) \text{ GeV}.$
- For events with $m_A > 400$ GeV, $Z p_T > 125$ GeV.

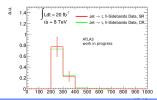
Data estimated background


- Blind in signal region.
- Data can boost BKG predictions.
- · Bkgs with fake taus estimated using template.

Template Method


· Define 3 control regions populated with fakes:

OS – loose τ	SS — loose τ
OS — !loose τ	SS — !loose τ


- Bkg shape extrapolated from CR to SR
- Bkg normalized using m_A sideband

- Important assumptions:
 - $\circ~$ Template m_A shape is good in SR.

- and
 - Normalisation in h-sideband describes m_h window

Had-had final signal acceptance

Signal acceptance increases with m_A , except at the highest mass point, where high p_T leptons failing the isolation requirements result in a lower acceptance.

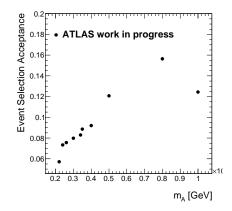
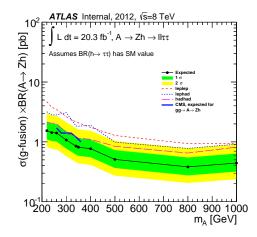


Figure: The signal acceptance for simulated signal samples, for all m_A available mass points.

Experimental systematics negligable when compared to template systematics.


- Experimental
 - Electron, muon, tauID
 - Pile-up and Luminosity
 - Jet Energy Scale
 - Tau Energy Scale
 - Tau Energy Resolution
 - Tau Energy Scale
 - Missing Transverse Energy
 - Jet Vertex Fraction
- Theoretical systematics being considered

• Template method systematics:

Changes in normalization and template due to different CR

- Region 1 (R1): events with 2 loose τ that are of same sign charge,
- Region 2 (R2): events with 2 τ , where one fails the loose τ ID, of opposite sign charge.
- Region 3 (R3): events with 2 τ that fail the loose τ ID, of opposite sign charge.
- Region 4 (R2): events with 2 τ , where one fails the loose τ ID, of same sign charge.
- Region 5 (R3): events with 2 τ that fail the loose τ ID, of same sign charge.

Conclusion

Currently blind. Hoping to look at data in the coming months Planning to combine in a note with:

- $A \rightarrow Zh(bb)$
 - $\circ \rightarrow \ell \ell b b$
 - $\circ \rightarrow vvbb$
- Similar VH(bb) [ATLAS-CONF-2013-079]