SAIP2014

Contribution ID: 192

Type: Oral Presentation

Phase evolution of vanadium oxides obtained through temperature programmed annealing of ammonium vanadate in hydrogen atmosphere

Tuesday, 8 July 2014 14:20 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

The possibility of obtaining vanadium dioxide (VO2) [wherein the vanadium ionic state is 4+] from a precursor of ammonium metavanadate (NH4VO3) bearing the ion V5+ is investigated.

The reduction is carried out by annealing the NH4VO3 powders in similar concentrations of H2 flow at varying temperatures. The resulting powders have been studied by several techniques including X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscope (TEM), Brunauer-Emmiter-Teller (BET) and Differential scanning calorimetry (DSC). It is found that remnants of bright yellow V5+ still exist up to annealing temperatures of 100 0C after which the sky-blue VO2 dominates at annealing temperatures of 150 0C to 250 0C. There is a population surge of metastable darkblue V6O13 (where V is in between V4+ and V5+ ionic states) between 250 0C and 300 0C. However above 350 0C the material reverts to the stable V5+ in the yellow-orange V2O5.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD)?

MSc

Main supervisor (name and email)
and his / her institution

Dr. Erasmus K Rammutla, erasmus.rammutla@ul.ac.za University of Limpopo, Dept. of Physics, P/Bag X1106, Sovenga, 0727.

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

NO

Primary author: Mr AKANDE, Amos (University of Limpopo)

Co-authors: Dr MWAKIKUNGA, Bonex (CSIR); Dr RAMMUTLA, Erasmus Koena (University of Limpopo)

Presenter: Mr AKANDE, Amos (University of Limpopo) **Session Classification:** DPCMM2

Track Classification: Track A - Division for Physics of Condensed Matter and Materials