
A quantum circuit modeling toolkit for high

performance computing

Makhamisa Senekane1, Bheki Zulu1 and Francesco Petruccione1,2
1 Centre for Quantum Technology, School of Chemistry and Physics, University of
KwaZulu-Natal, P/Bag X54001 Durban, South Africa
2 National Institute for Theoretical Physics (NITheP KZN), P/Bag X54001 Durban, South
Africa

E-mail: 211560527@stu.ukzn.ac.za, 210556489@stu.ukzn.ac.za, petruccione@ukzn.ac.za

Abstract. Theoretically, quantum computers are known to solve a certain class of problems
more efficiently than their classical counterparts. This is due to parallelism which is inherent
in quantum algorithms. However, a full-scale quantum computer has not been realised as
yet. Therefore, in order to validate and debug quantum circuits, a classical computer is used.
Since most of these circuits are simulated using personal computers (PCs), quantum circuits
with a limited number of quantum bits (qubits) can only be simulated, due to computational
limitations of PCs. In this work, we report the simulation of quantum circuits for a high
performance platform using message passing interface for the Python (mpi4py) package.

1. Introduction
Quantum computation uses quantum mechanical principles such as entanglement, superposition
and tunneling to process information. It dates back to the ideas of Manin [1], Feynman [2] and
Bernioff [3] in the 1980s. It was mainly motivated by the limitations imposed on the conventional
classical computation by the fundamental laws of physics. Additionally, the first universal
quantum machine was proposed by Deutsch [4] in 1985. However, a major breakthrough came
in 1994, with the work of Shor [5], who showed that a quantum computer can be used to break
some of the conventional cryptographic algorithms. Another contribution was by Grover [6] two
years later, who invented a quantum search algorithm which offers a quadratic speed-up over the
best known classical search algorithm. Since then, there has been a concerted effort to develop
more quantum algorithms for different applications [7, 8, 9].

In a classical computer paradigm, computer scalability can be governed by Moore’s law [10].
However, as the transistors get smaller, the quantum effects would be too pronounced, and
Moore’s law would cease to apply. Therefore, since Moore’s law does not apply anymore in
the quantum regime, scalability of quantum computers cannot be determined by Moore’s law.
On the contrary, scalability in the quantum regime is dependent on the ability to isolate the
quantum system (hence mitigate decoherence) and the advancement of fault-tolerant quantum
computation mechanisms.

Although quantum computation offers many interesting computational capabilities, the major
drawback is that a scalable quantum computer is yet to be realized. So, in order to debug and
validate quantum algorithms, a classical computer is used. Furthermore, the Gottesman-Knill
theorem [11], makes it possible for the classical simulation of some quantum circuits, since it

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 528

states that a certain class of quantum circuits, known as stabilizer circuits, can be simulated
efficiently on a classical computer. Many classical simulators of quantum circuits have been
simulated [12]. A comprehensive list of these simulators can be found in Ref. [13]. It can be
observed that most of the simulators developed thus far are intended for a stand-alone personal
computer (PC). Some attempts have been made to develop simulators that make use of high
performance computing (HPC) [14, 15, 16]. We report in this work a quantum circuit modeling
toolkit which is intended for use on a high-performance computing platform. This simulator
is developed using Python programming language, which ease of use and rapid development.
Additionally, Python is freely available, with an open-source licensing. Finally, since Python is
a vectorized language, it is suitable for high performance scientific computing. A python module
that is used to develop this toolkit is message passing interface for Python (mpi4py).

The remainder of this manuscript is arranged as follows. The next section provides a
background information on quantum computation and high performance computing. Section
3 discusses the implementation details of the simulator. It is followed by Section 4, which
discusses the simulation results obtained using this simulator. The last section concludes this
manuscript.

2. Background Information
2.1. Quantum Computation
As opposed to a classical computer, which has a binary digit (bit) as its basic unit of information,
a quantum computer has a quantum bit (qubit) as its unit of information. Additionally, a bit,
which can only exist in state 0 or 1, a qubit can exist in the superposition of states |0〉 and |1〉,
where states |0〉 and |1〉 are known as computational basis states. These computational basis
state can be represented as column vectors, where

|0〉 =

(
1
0

)
(1)

and

|1〉 =

(
0
1

)
. (2)

Mathematically, a qubit can be represented as

|ψ〉 = α|0〉+ β|1〉, (3)

where α and β, which are known as probability amplitudes, satisfy the condition

|α|2 + |β|2 = 1. (4)

Analogous to their classical counterparts, the building blocks of quantum circuits are quantum
gates. However, unlike some of the classical gates, which are not reversible, all quantum gates
are reversible. This owes to the fact that basically, a quantum gate is any unitary operation,
and unitaries are invertible, hence reversible. Some of the common quantum gates are

a) Hadamard gate, H

H = 1/
√

2

(
1 1
1 −1

)
.

b) Phase shift gate, R

R =

(
1 0
0 eiθ

)
.

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 529

2.2. High Performance Computing
Although it is generally believed that classical computers cannot efficiently simulate universal
quantum computers, it is nevertheless possible to classically simulate some of the quantum
circuits, especially if such circuits are small (using few qubits). Because a stand-alone PC has
limited memory and computing speed, and computational resources for simulating quantum
circuits on a classical computer grow exponentially with an increase in input qubits, a PC puts
huge limitations on the quantum circuits that can be efficiently simulated. These limitations
can be overcome by classical simulation of quantum circuits on a high performance computing
platform. HPC deploys the aggregation of computing power among different nodes so as to
yield high overall computational power. It makes use of supercomputers and parallel processing
schemes to solve compute-intensive problems [17].

High performance computing can be implemented using either of the two computing
architectures, namely shared memory or distributed memory architectures. In the former
architecture, all the processors have access to the entire memory of the machine. In contrast, in
the latter architecture, each machine has a processing element (PE), which contains its processor
and its memory, where each processor could only access the memory in its PE.

2.3. Message Passing Interface
MPI is an industry-wide standard protocol for passing messages between parallel processors
[18] though generally, it can also run on shared memory machines. It is a de facto standard
for parallel programming on distributed memory architecture systems [19]. It’s goals are high
performance, scalability and portability. Furthermore, message interface passing supports both
point-to-point and collective communication.

It is worth noting that MPI is in itself neither an implementation nor a language, but
rather a specification or an application programmer interface (API). MPI has a number of
components such as user-defined datatypes, communication ports, communication operations
and communication contexts [20, 21]. Typical communication operations include broadcast,
reduce, scatter and gather [21].

2.4. Message Passing Interface for Python
One of the implementations of MPI standard for Python programming language is mpi4py [22].
It provides an object oriented approach to message passing which provides MPI bindings for
Python. In the work presented in this manuscript, mpi4py package was used because it offers
a number of benefits. These benefits include: clean and efficient MPI interface for Python,
extensible and compatible implementation and easy of use.

3. Implementation
The toolkit was implemented using a single physical host, with a dual-processor PC at the
clock frequency of 2.7 Gigahertz per processor, with a random access memory (RAM) of 4
Gigabytes. However, three virtual machines (VMs) were created and clustered together on
this physical host machine, with each VM having a RAM of 1 Gigabytes. Different quantum
circuits were then simulated, using various virtual nodes. Some of the circuits simulated include
Einstein-Podolsky-Rosen (EPR) pair generation circuit, Greenberger-Horne-Zeilinger (GHZ)
state preparation circuit and a three-qubit quantum Fourier Transform circuit [7, 12]. The
QFT circuit was further expanded to simulate up to nine qubits, so as to make a more realistic
comparison with the PC-based results obtained in [12]. The simulations were implemented using
Python programming language, using mpi4py for MPI implementation.

Quantum gate operations can include either multiplication of state vectors with unitary ma-
trices or tensor product for composite systems. As an example, consider the EPR pair generation
circuit in figure 1. Also, consider that the two inputs are |a〉 = 0 and |b〉 = 0 respectively. Then

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 530

this can be mathematically represented as

epr generation(|00〉) → 1/
√

2∗

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

[(1 1
1 −1

)(
1
0

)
⊗
(

1
0

)]

= 1/
√

2*

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
0
1
0

 .

This result can be naturally decomposed into smaller tensor matrices, which can then be
distributed over different prosessors for HPC [14, 23, 24]. A similar approach was taken for
other quantum circuits. The simulation results obtained are provided in the next section.

Figure 1. A circuit diagram of EPR pair generation circuit. It consists of two inputs |a〉 and
|b〉, together with two quantum gates (Hadamard and control NOT (CNOT) gates.

4. Evaluation
Efficiency tests were run for this high performance computing quantum circuit simulation toolkit.
Three quantum circuits were used, and the execution times of each circuit with respect to the
number of processes were recorded. The timer functionality Wtime() was used to record the
execution times. Figures 2, 3 and 4 show the results obtained for EPR pair generation, GHZ state
generation and three-qubit QFT circuits respectively. The results obtained underline the utility
of the simulator for quantum circuit simulation, since an increase in the number of processes
used results in a significant decrease in execution time. Furthermore, the results demonstrate the
feasibility of a portable, parallel simulation toolkit for quantum computing, written in Python.
A measure that is employed for the utility of the simulator reported in this manuscript is the
speed-up as compared to the stand-alone PC. This is given as:

speedup =
Tserial
Tparallel

, (5)

where Tserial is the execution time for a stand-alone PC given in [12], while Tparallel is the
execution time obtained in figures 2, 3 and 4. From the results, the speed-up of the EPR pair
generation circuit can be up to 3.4, that of GHZ circuit can be up to 3.2 while that of three-qubit
QFT can be up to 2.5. These speed-ups provide a good support for the utility of this quantum
circuit modeling toolkit.

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 531

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

2 3 4 5 6 7 8 9 10

E
xe

cu
ti

on
 T

im
e

(s
)

Processes

Figure 2. Execution time for EPR pair generation circuit as a function of number of processes.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

2 3 4 5 6 7 8 9 10

E
xe

cu
ti

on
 T

im
e

(s
)

Processes

Figure 3. Execution time for GHZ state generation circuit as a function of number of processes.

Finally, coupled with the speed-up mentioned above, since this simulator uses Python
programming language, it can be easily extended to simulate other quantum circuits, with a
very rapid development time. Additionally, since Python is one of the three leading progamming
languages in high performance scientific computing (the other two being C/C++ and Fortran),
coupled with the fact that it is the only one of the three that is vectorized, it makes it a good
candidate for quantum computing simulation toolkit. This circuit can then be used to simulate
different type of quantum circuits mentioned in this manuscript.

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 532

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

2 3 4 5 6 7 8 9 10

E
xe

cu
ti

on
 T

im
e

(s
)

Processes

Figure 4. Execution time for three-qubit QFT circuit as a function of number of processes.

It is worth noting that this current simulator in its current form is limited in terms of
functionality, since very few quantum circuits can be efficiently simulated. Additionally, the
focus is only on the increase in the number of processes in order to effect a speed-up. The
work is still on-going to increase the number of quantum circuits that can be simulated using
this toolkit, and the running of tests on a physical (as opposed to virtual) HPC platform with
multiple number of nodes and communication delays between the nodes.

5. Conclusion
In this manuscript, we have reported a quantum circuit modeling toolkit for HPC. This toolkit
was evaluated using standard stabilizer circuits. The simulation results confirm the utility of
the toolkit. However, this simulator still has some limitations. The quantum circuit that can
be simulated by this toolkit are very few. This is because the work presented in this manuscript
is still in progress. The next focus will be on the optimization of the simulator code, in order
to make it extensible and scalable. Additionally, it (future work) will focus on extending the
simulated circuits to any generalized quantum digit circuit, and implementing such circuits on
a physical HPC platform.

Acknowledgments
This work is based on research supported by the South African Research Chair Initiative of the
Department of Science and Technology and National Research Foundation.

References
[1] Knill E, Laflamme R, Barnum H, Dalvit D, Dziarmaga J, Gubernatis J, Gurvits L, Ortiz G, Viola L and

Zurek W 2002 Los Alamos Science 27
[2] Feynman R P 1982 International journal of theoretical physics 21 467–488
[3] Benioff P 1980 Journal of Statistical Physics 22 563–591
[4] Deutsch D 1985 Proceedings of the Royal Society of London A. Mathematical and Physical Sciences 400

97–117

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 533

[5] Shor P W 1994 Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on (IEEE)
pp 124–134

[6] Grover L K 1996 Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (ACM)
pp 212–219

[7] Nielsen M A and Chuang I L 2010 Quantum computation and quantum information (Cambridge University
Press)

[8] Childs A M and Van Dam W 2010 Reviews of Modern Physics 82 1
[9] Bacon D and VAn DAm W 2010 Communications of the ACM 53 84–93

[10] Moore G E et al. 1998 Proceedings of the IEEE 86 82–85
[11] Gottesman D 1998 arXiv preprint quant-ph/9807006
[12] Senekane M, Mohapi L and Petruccione F 2013 AFRICON, 2013 (IEEE) pp 1–4
[13] “Quantiki” “2010 (Accessed: March 16, 2014)” “List of QC simulators” URL ‘‘http://www.quantiki.org/

wiki/List_of_QC_simulators"

[14] Obenland K M and Despain A M 1998 arXiv preprint quantph9804039
[15] Niwa J, Matsumoto K and Imai H 2002 Unconventional Models of Computation (Springer) pp 230–251
[16] De Raedt K, Michielsen K, De Raedt H, Trieu B, Arnold G, Richter M, Lippert T, Watanabe H and Ito N

2007 Computer Physics Communications 176 121–136
[17] Hager G and Wellein G 2010 Introduction to high performance computing for scientists and engineers (CRC

Press)
[18] Gropp W, Lusk E and Thakur R 1999 Using MPI-2: Advanced features of the message-passing interface

(MIT press)
[19] Jin H, Jespersen D, Mehrotra P, Biswas R, Huang L and Chapman B 2011 Parallel Computing 37 562–575
[20] Pacheco P S 1997 Parallel programming with MPI (Morgan Kaufmann)
[21] Pacheco P 2011 An introduction to parallel programming (Elsevier)
[22] Dalćın L, Paz R, Storti M and D‘Eĺıa J 2008 Journal of Parallel and Distributed Computing 68 655–662
[23] Patz G 2003 A parallel environment for simulating quantum computation Ph.D. thesis Massachusetts Institute

of Technology
[24] Steeb W H 1997 Matrix calculus and Kronecker product with applications and C++ programs (World

Scientific)

Proceedings of SAIP2014

SA Institute of Physics ISBN: 978-0-620-65391-6 534

``http://www.quantiki.org/wiki/List_of_QC_simulators"
``http://www.quantiki.org/wiki/List_of_QC_simulators"

