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Abstract. A simple method is described to determine the possible cluster structures forming
within a nucleus. This is used to describe the multiple cluster decays seen from certain nuclei and
reproduce exotic decay data for a range of actinide nuclei, using the Binary Cluster Model, along
with a phenomenological potential. Further, energy spectra and B(E2) values are calculated
in order to establish whether these cluster structures could exist within the nucleus as a bound
state.

1. Introduction
The emission of a heavy ion was first observed experimentally by Rose and Jones [1], when
they detected the emission of 14C from 223Ra. In the following years, decays via the emission of
clusters heavier than Carbon and via the emission of multiple clusters were observed [2, 3, 4, 5],
while several theoretical models were developed in order to understand this process of decay by
reproducing experimental data and predicting other possible cluster decays [6, 7].

One of the more simple theoretical models is that of the Binary Cluster Model (BCM) [8],
where a cluster consisting of (Z2, N2) protons and neutrons orbits an inert core of (Z1, N1)
protons and neutrons as a description of the nucleus consisting of (ZT , NT ) protons and neutrons,
where ZT = Z1+Z2 and NT = N1+N2. Exotic decay is then easily exhibited, by simply choosing
the cluster as the emitted ion, and identifying the remaining nucleons as the core.

By utilizing the work of Gurvitz and Kalbermann [9, 10], the exotic decay half-life can be
calculated with T1/2 = h̄ ln 2

Γ where the decay width Γ is given by

Γ =
h̄2

2µ

exp
[
−2
∫ r3
r2
|p(r)|dr

]
∫ r2
r1

1
p(r)dr

(1)

with r1, r2 and r3 corresponding to the classical turning points; the intersection of Q and V (r),
where Q refers to the Q-value of the decay. The reduced mass is given by µ = A1A2

A1+A2
, and the

classical momentum p(r) =
√

2µ
h̄2

(Q− V (r)).

Buck et al. successfully reproduced the exotic decay half-lives of several nuclei by using (1)
[11, 12], along with a Woods-Saxon and cubic Woods-Saxon form of the nuclear potential [13],
given by
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VN (r) = −V0

(
x

1 + exp [(r −R0)/a]
+

1− x
(1 + exp [(r −R0)/3a])3

)
(2)

where the potential depth is given by V0, the diffuseness by a, the radius by R0, and the relative
contributions made by the Woods-Saxon and cubic Woods-Saxon terms are indicated by x.

Experiments have shown, however, that it is possible for nuclei to decay via the emission of
multiple clusters, which poses certain problems in describing such decays theoretically. Further,
calculating the exotic decay half-life for nuclei for which no experimental decay data exists also
poses a problem in selecting the core and cluster. To this end, a method has been developed
which enables us to consider the nucleus as a mixture of up to four different core-cluster
decompositions, each with an associated preformation probability [14, 15].

These core-cluster structures can account for multiple cluster emissions, and the decay half-
lives can be computed, by weighting the decay width with the preformation probability, and
comparing it to the experimental values, where applicable. Further confirmation of these cluster
structures can be found by calculating energy spectra and B(E2) values within the BCM.

Section 2 provides a brief summary of the Binary Cluster Model, while Section 3 describes
the method of determining the core and cluster sizes. Section 4 contains the results where this
method has been applied on a range of nuclei.

2. Binary Cluster Model
The Binary Cluster Model (BCM) assumes that a cluster (A2, Z2) orbits an inert core (A1, Z1).
In order to satisfy the Pauli Exclusion Principle, the nucleons contained in the cluster have to be
placed above the Fermi surface of the core nucleons. The global quantum number is introduced
for this purpose, and defined as,

G = 2n+ L =

nc∑
i=1

(2ni + li) (3)

where nc is the number of nucleons in the cluster. The values of ni and li correspond to the
filling of shell orbitals above the closed core, satisfying the Pauli principle by hand [8]. The
quantum numbers L and n refer to the orbital angular momentum and the number of nodes
contained in the wavefunction of the core-cluster relative motion, respectively.

For actinide nuclei, the value of G can be estimated through the simple scaling formula
G = 5A2, first introduced by Buck et al. [16]. This gives rise to a natural band of states,
corresponding to the energies EL, where L = 0, 2, 4, · · · , which can be calculated by using the
Bohr-Sommerfeld (BS) relation [17],∫ r2

r1

√
2µ

h̄2 (EL − V (r))dr = (G− L+ 1)
π

2
(4)

where r1 and r2 represents the innermost classical turning points. The potential V (r) consists
of three parts; a coulomb term Vc(r) [18]; a Langer-modified centrifugal potential

VL(r) =
(L+ 1

2
)1/2h̄2

2µr2
[19]; and a nuclear potential given by the phenomenological Woods-Saxon

and cubic Woods-Saxon form, given by (2). By fitting experimental decay data to the cluster
emission of several thorium isotopes, the best-fit parameters were found to be,

a = 0.75 x = 0.36 V0 = 54.7A2 G = 5A2 (5)

while the radius R0 is obtained by fitting its value to the energy of the ground state, such that
(4) is satisfied. These parameters were used to investigate the cluster emission and -structure
of nuclei known to undergo exotic decay.
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3. Cluster Formation Probability
The advantage of the Binary Cluster Model (BCM) is that the emission of a heavy ion is very
easily exhibited, although a consistent method of determining the core and cluster sizes are
required. Experimental data serves as a good guide, but these data are mostly lacking. To this
end, we investigate the hypothesis of utilizing the binding energy of core and cluster as a guide
in determining these two components [14, 15].

From known exotic decay data, the most favourable combination seems to be if either the
core or cluster is doubly, or at least singly, magic. The most tightly bound nuclei are then found
by determining the partition of a fixed charge and mass (ZT , AT ) into various possible pairs of
nuclides with charge and mass values (Z1, A1) and (Z2, A2) which maximize the difference:

D(Z1, A1, Z2, A2) = [BA(Z1, A1)−BL(Z1, A1)] + [BA(Z2, A2)−BL(Z2, A2)] (6)

between the actual binding energy BA and some smoothly varying average BL obtained from a
liquid-drop mass formula.

Since even-even nuclei are more tightly bound than other nuclei, only even-even (ZT , AT ),
(Z1, A1) and (Z2, A2) are considered. The current version of the liquid-drop formula, or Semi-
Empirical Mass Formula (SEMF), for even-even nuclei is used [20]

BL = avA− asA2/3 − ac
Z(Z − 1)

A1/3
− aa

(A− 2Z)2

A
+

ap

A1/2
(7)

where

av = 15.56MeV as = 17.23MeV ac = 0.697MeV aa = 23.285MeV ap = 12MeV (8)

The idea is to establish a consistent method where the only information required is the total
charge and mass, (ZT , AT ), along with readily available mass tables and (6). Additional input
stems from the experimental observation that electric dipole transitions in heavy nuclei are very
weak, i.e. B(E1; 1− → 0+) ≈ 0. Within the BCM, this requires, to a good approximation [15]

Z1

A1
=
Z2

A2
=
ZT
AT

;
N1

A1
=
N2

A2
=
NT

AT
(9)

where N represents the number of neutrons.
In order to satisfy (9), the nucleus is considered to consist of a mixture of up to four core-

cluster decompositions, with associated probabilities. The clusters are neighbouring isotopes
and isotones, to ensure the satisfaction of these equations. This allows us to select an arbitrary
cluster charge Z̄2 as plotting parameter, compute the corresponding mean neutron number N̄2

according to

N̄2 =
NT Z̄2

ZT
(10)

and determine the number of protons and neutrons contained in the cluster in such a manner
that they bracket the mean values, i.e.

Z2 ≥ Z̄2 ≥ Z2 − 2 ; N2 ≥ N̄2 ≥ N2 − 2 (11)

with weights

p(Z2) = (1/2)[Z̄2 − (Z2 − 2)] ; p(Z2 − 2) = (1/2)[Z2 − Z̄2]

p(N2) = (1/2)[N̄2 − (N2 − 2)] ; p(N2 − 2) = (1/2)[N2 − N̄2]
(12)

while the weighted average D̄(Z̄2, N̄2) is calculated as
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D̄(Z̄2, N̄2) =
∑
Z2,N2

p(Z2)p(N2)D(Z2, N2). (13)

This method allows us to select mean cluster charges across a range of values, and calculate
the corresponding weighted average D̄(Z̄2, N̄2). These results can be plotted, with the maximum
corresponding to the most likely mean cluster charge. Decomposing this mean cluster charge
into four core-cluster decompositions will then reveal the most likely core-cluster structure of
the parent nucleus, with its associated probability of formation.

4. Results
In order to establish the possible core-cluster structures of a nucleus, it is necessary to determine
the mean cluster charge Z̄2 for which D̄(Z̄2, N̄2) is a maximum. Figure (1) shows the plot of
D̄(Z̄2, N̄2) for 226Th as a function of cluster charge. Since the full calculation produces two
peaks, corresponding to Z2 = 7 and Z2 = 9, it is necessary to introduce some smoothing of the
curve, in order to obtain a single maximum.

A previous method based on a Fourier-based filtering process has been used [14] to remove
the irregularities, but a similar result can be obtained by simply averaging over neighbouring
values. At a specific mean cluster charge Z̄2, an average value of D̄(Z̄2, N̄2) is then obtained by
averaging the value of D̄(Z̄2, N̄2) from a set number of Z̄2 values surrounding the mean cluster
charge of interest.

This method eliminates irregularities, by producing a single maximum, and takes into account
relative contributions from multiple peaks and regions next to peaks. For the example of 226Th,
the two peaks corresonding to Z2 = 7 and Z2 = 9 is reduced to a single peak at Z2 = 8, a cluster
charge which is contained in both peaks of the full calculation, since only even-even clusters are
considered, and should therefore be the most likely cluster charge.

Figure 1. Calculations of D̄(Z̄2, N̄2) as a
function of cluster charge for 226Th.

Figure 2. Calculations of D̄(Z̄2, N̄2) as a
function of cluster charge for 230U .

The maximum of D̄(Z̄2, N̄2) for 226Th is obtained for a mean cluster charge of Z̄2 = 9.26,
while for 230U Z̄2 = 9.52. These mean cluster charges can be broken down into the four different
core-cluster decompositions in order to reveal the possible cluster structures, along with their
preformation probabilities. The exotic decay half-life can then be calculated for each cluster,
and compared to experimental data, where available.

It was found that cluster decays which are not observed experimentally tend to have a small
preformation probability and a long half-life, while the experimentally observed cluster decays
tend to have greater preformation probabilities and shorter half-lives. Should the half-life for a
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cluster decay be calculated to be orders of magnitude greater than another (observed) cluster
decay, it will be nearly impossible to detect the decay of such a cluster, due to the competition
from α-decay and spontaneous fission that occurs on a much shorter time-scale.

A summary of the experimentally observed cluster decays seen in the actinide nuclei
considered are shown in table 1. Of all the nuclei investigated, only one experimentally observed
cluster was not predicted in the model: the 28Mg decay of 238Pu, although this shortcoming can
be fixed by extending the model such that the nucleus consists of eight core-cluster structures. As
can be seen from table 1, more than half of the calculated half-lives are in reasonable agreement
with experimentally measured values.

The choice of parameters failed to reproduce the cluster decay of carbon and oxygen. While
previous work shows [11, 12] that the BCM is not successful in accurately describing the cluster
emission of oxygen, the inaccuracy in the carbon decay of 224Ra puts an additional bound on
the mass and charge region of where the particular choice of parameters are valid. The potential
parameters were chosen to reproduce the cluster decay of thorium isotopes, and applied to
the calculations of radium, uranium and plutonium isotopes. A more consistent method of
determining the potential parameters is therefore needed to accurately calculate exotic decay
data for all nuclei considered, such as calculating parameter values from a microscopic potential,
as was done for alpha clusters [21].

The calculated data show that multiple cluster decays can be desribed theoretically within
this model, and that, where experiments are unable to determine the mass of an emitted cluster,
this theoretical approach can be used to deduce the most likely emitted cluster. Such an example
is the cluster emission of neon isotopes from 232Th and 234U [22].

Table 1. Summary of Exotic Decay Half-Lives of all experimentally observed decays. All
considered actinide nuclei are shown with the emitted cluster and whether or not the model
predicted this cluster. If the model predicts the cluster, the preformation probability P is also
shown. Should the calculated half-life be within a factor 3 of the experimentally measured
half-life, it is considered as a good approximation.

Nucleus Cluster P Observed Factor ∼ 3 T calc1/2 [y] T expt1/2 [y]
222Ra 14C 0.573

√ √
6590 4017± 528

224Ra 14C 0.115
√

22.7× 108 (24.9± 1.6)× 107

226Th 18O 0.099
√

21.9× 1010 1.82× 109

228Th 20O 0.38
√

24.0× 1013 (16.9± 1.4)× 1012

230Th 24Ne 0.504
√ √

13.3× 1016 (13.0± 0.52)× 1016

232Th 24Ne 0.332
√

6.54× 1022 5.06× 1021

232Th 26Ne 0.478
√ √

4.87× 1021 5.06× 1021

230U 24Ne 0.654
√

20.6× 1013 (11.9± 2.8)× 1011

232U 24Ne 0.432
√ √

13.7× 1012 (77.4± 4.5)× 1011

234U 24Ne 0.025
√

48.7× 1018 (27.3± 6.7)× 1017

234U 26Ne 0.815
√ √

43.0× 1017 (27.3± 6.7)× 1017

234U 28Mg 0.155
√ √

15.8× 1017 (17.5± 4.3)× 1017

236Pu 28Mg 0.129
√ √

1.14× 1014 1.43× 1014

238Pu 28Mg 1.46× 1018

238Pu 30Mg 0.470
√ √

2.51× 1018 1.46× 1018

238Pu 32Si 0.070
√

4.46× 1018 6.27× 1017

240Pu 34Si 0.454
√ √

14.1× 1018 (50.5± 5.4)× 1017
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In order to determine whether the proposed cluster structures could exist within the nucleus
as a bound state, structure observables such as energy spectra and B(E2) values were computed.
The B(E2) values can be computed according to [23, 24]

B(E`;Li → Lf ) =
2`+ 1)

4π

[
Z1

(
−A2

A

)`
+ Z2

(
A1

A

)`]2

|〈Li0`0|Lf0〉|2|〈ψLf
|r`|ψLi〉|2 (14)

where ψL is the wavefunction, and a small effective charge is introduced by replacing Zi →
Zi + εAi, with ε = 0.17.

Since the nucleus is considered to be a mixture of four core-cluster decompositions, the
observables are calculated for each core-cluster decomposition, and a weighted average is
calculated, according to the preformation probabilities. This weighted average value is then
compared to the experimental value.

A summary of the calculated B(E2; 2+ → 0+) and the highest known energy state are shown
in table 2. Since the radius R0 is fitted to theQ-value of the ground state, the ground state energy
is inherently correct, and should the highest known energy state correspond to the experimental
value, all energy levels in between should be in good agreement with the experimental values.

From table 2 it can be deduced that the proposed cluster structures can exist as bound
states, since all calculated B(E2) values, except for plutonium isotopes, are in agreement with
the experimental values, as well as the energy levels. The inaccuracy in reproducing data of the
plutonium isotopes places an additional bound on the region where the choice of parameters are
valid.

Table 2. The calculated B(E2; 2+ → 0+) values for all actinide nuclei considered are compared
to known experimental values. The highest known energy levels are also calculated and compared
to experimental values.

Nucleus B(E2)expt[W.u.] B(E2)calc[W.u.] E∗
L EexptL [MeV ± eV] EcalcL [MeV]

222Ra 111± 9 80 E∗
20 3.29± 11 3.36

224Ra 97± 4 96 E∗
12 1.41± 4 1.36

226Th 164± 10 145 E∗
20 3.10± 8 2.84

228Th 167± 6 172 E∗
18 2.41± 7 2.29

230Th 196± 8 206 E∗
24 3.82 2.59

232Th 198± 11 219 E∗
30 5.16± 3 5.07

230U 222± 27 213 E∗
22 3.24± 4 3.01

232U 241± 21 231 E∗
20 2.66± 9 2.51

234U 236± 10 251 E∗
30 4.81 4.95

236Pu - 314 E∗
16 1.79± 5 1.51

238Pu 285± 5 347 E∗
26 4.27± 9 3.44

240Pu 287± 11 393 E∗
32 5.82± 8 4.76

In conclusion, the proposed method of determining possible core-cluster decompositions
within actinide nuclei and using the binary cluster model to calculate decay half-lives,
electromagnetic transition probabilities and energy spectra, has shown that multiple cluster
decays can be described theoretically, and that these core-cluster structures can possibly exist
within heavy nuclei as bound states.

A fixed choice of potential parameters places a bound on the region where it can be applied,
but within this region, the calculated decay values are in good agreement with experimental
values. As such, it is possible to deduce the mass of emitted clusters where experiments are
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unable to. Calculations of B(E2) values and energy spectra also indicate that these cluster
structures can exist as bound states, although a more careful approach to obtaining the nuclear
potential parameters might be needed.
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