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Abstract. Quantum simulation of quantum systems is an extremely active field of
contemporary research. In this paper a brief introduction is given to this field, with an emphasis
on the distinction between analog and digital quantum simulations. Furthermore, conventional
methods for the digital quantum simulation of Hamiltonian simulation are discussed and
generalisations of these methods for the digital simulation of open quantum systems are
presented.

1. Introduction
It has been known for some time that the simulation of quantum systems is a challenging
problem [1]. In particular, one immediately apparent difficulty inherent in simulating quantum
systems on conventional classical computers arises from the so called exponential explosion [2] -
a description of the fact that a classical encoding of an N qubit quantum state (one may think
of a qubit as a spin 1/2 particle [3]) typically requires the storage of 2N probability amplitudes.
As such, even writing the initial state of some desired simulation (before a discussion of the
simulation itself can even take place) may require totally unrealistic memory resources. As an
illustration, encoding the state of 40 spin 1/2 particles may require the storage of 240 ≈ 1012

complex numbers, which at standard precision requires approximately 4 terabytes of memory
[2].

Due to such difficulties and the large number of potential applications for simulation of
quantum systems in fields such as physics, biology and chemistry, the development of methods for
the efficient simulation of quantum systems has become an extremely active area of contemporary
research [2]-[4]. As we are concerned in this paper with a presentation of potential methodologies
for the efficient quantum simulation of open quantum systems, it is useful to begin by defining
what is meant by ““efficient simulation of quantum systems”. Firstly, a simulation of a quantum
system is understood as some process via which certain pre-specified properties of the the
quantum system are accurately predicted [4]. It is important to note that we do not require
our simulation to predict all properties of the quantum system of interest. For example, one
may be interested in the expectation value of specific observables, scattering amplitudes within
a quantum field theory or the state of the system at some particular time. The predictions of
the simulation are considered accurate if the error is less than some pre-specified error tolerance
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ε, and the simulation is considered successful if the specific properties of interest are accurately
predicted, regardless of whether or not other properties of the quantum system are accurately
predicted, or even accessible. Secondly, a simulation is considered efficient if the time and space
resources required to obtain the required predictions can be determined as a polynomial function
of the length of the bit string specifying the problem inputs and of 1/ε [4, 5].

In the early 1980’s Richard Feynman suggested that it may be possible to use quantum
systems themselves as a means to efficiently simulate other quantum systems and simultaneously
avoid difficulties such as the exponential explosion [1]. This suggestion has turned out to be
remarkably prescient and while many approximation methods, such as Monte-Carlo techniques
[6], have been developed for the efficient simulation of quantum systems on classical computers,
we are concerned here with simulations in line with Feynman’s original vision - so called “efficient
quantum simulation of quantum systems”.

2. Analog and digital quantum simulation
Quantum simulation, as envisaged by Feynman, requires a quantum simulator, which is
understood as a controllable quantum system used for the simulation of other quantum systems
[2]. For the purposes of illustration we will discuss in this section the simulation of closed
quantum systems, undergoing Hamiltonian generated unitary evolution, but it is important to
bear in mind that these principles may be applied to a broad class of quantum systems, such as
quantum field theories and open quantum systems, as discussed in the review of Georgescu et.
al. [2].

Consider a closed quantum system, initially in the state |φ(0)〉 evolving via the Hamiltonian
Hsys into the final state |φ(t)〉 = U |φ(0)〉 where U = exp(−ih̄Hsyst). As illustrated in Figure
1, any quantum simulation of such a system requires three distinct steps: The first step, or
preparation phase, is an efficient preparation of the initial quantum state of the quantum
simulator |ψ(0)〉, where there exists some well defined mapping between the states |ψ(0)〉 and
|φ(0)〉. The second step is a simulation of the system dynamics, i.e. an implementation of the

unitary dynamics Û where Û approximates U , and the final step is an extraction of the desired
system properties via measurements of the final state of the simulator |ψ(t)〉 = Û |ψ(0)〉. It
is important to note that all steps in the above process need to be efficient according to the
criterion discussed in the introduction.

2.1. Digital quantum simulation
Digital quantum simulation refers to quantum simulation utilising the conventional quantum
circuit model implemented on some universal quantum computer [3]. In order to perform a
digital quantum simulation it is therefore necessary that the initial state of the simulator |ψ(0)〉
is some multi-qubit state. Furthermore, the unitary transformation Û is then implemented via a
sequence of one and two qubit gates from some appropriate universal gate set [3]. It is interesting
to note that in principle any unitary operation can be decomposed into a sequence of gates from
any universal gate set (hence the name universal gate set) however not all such decompositions
are efficient - i.e. not all unitary operators can be decomposed into a polynomial number of gates
from some universal set. The question of which Hamiltonians can be efficiently simulated via
digital quantum simulation has been exhaustively addressed [2, 4] and in Section 3 we provide
an illustration of the prevailing methodology by using local Hamiltonians as an example. Digital
quantum simulation is advantageous in that any universal quantum computer can be used as a
digital quantum simulator. However, this advantage comes at the price of requiring a sufficiently
sized universal quantum computer, which in itself is a significant theoretical and technological
challenge, whose realisation has not yet been achieved.
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Figure 1. Schematic representation of a typical quantum simulation of a closed quantum
system undergoing Hamiltonian generated unitary evolution U = exp(−ih̄Hsyst). The first
stage of the simulation is preparation of the initial state of the simulator |ψ(0)〉, which is in
direct correspondence with |φ(0)〉, the initial state of the system. The simulator then evolves

via Û , an approximation to U , after which the desired system properties are obtained from
measurements of the final simulator state |ψ(t)〉.

2.2. Analog quantum simulation
Analog quantum simulation, also known as quantum emulation, refers to quantum simulations
in which one designs a quantum system (the quantum simulator) whose Hamiltonian Hsim is
in direct correspondence with the Hamiltonian of the system which is to be simulated Hsys.

The simulation then proceeds by letting the simulator evolve naturally via Û = exp(−ih̄Hsimt).
As an example [2] consider the Hamiltonian describing a gas of interacting bosonic atoms in a
periodic potential

Hsim = −J
∑
i,j

â†i âj +
∑
i

εin̂i +
1

2
U
∑
i

n̂i(n̂i − 1) (1)

where â†i and âi are the bosonic creation and annihilation operators on the i’th lattice site,

n̂i = â†i âi is the atomic number operator and εi denotes the energy offset of the i’th lattice
site. The coefficient J provides a measure of the hopping strength between lattice sites and
U quantifies the interaction strength between atoms at the same lattice site. The Hamiltonian
Hsim is extremely similar to the Bose-Hubbard Hamiltonian

HBH = −J
∑
i,j

b̂†i b̂j − µ
∑
i

n̂i +
1

2
U
∑
i

n̂i(n̂i − 1) (2)

where J and U are the same as above and µ is the chemical potental. The correspondence
between Hsim and HBH is clear and as such it is evident that one may straightforwardly simulate
the Bose-Hubbard model, via identification of appropriate parameters, using an analog quantum
simulator consisting of atoms in an optical lattice. Analog quantum simulation is advantageous
in that one does not require an entire universal quantum computer for such simulations, and as
a result analog quantum simulations have already been successfully demonstrated [2].

3. Hamiltonian simulation
In 1996 Lloyd [7] demonstrated a method for the digital simulation of Hamiltonian systems, and
since then this method has provided the fundamental methodology for more sophisticated digital
Hamiltonian simulation algorithms [4]. In this section we briefly review these methods as they
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provide the inspiration for the open quantum system digital simulation methods presented in
Section 4. Lloyd considers a Hamiltonian which may be written as the sum of local Hamiltonians

H =
M∑
l=1

Hl (3)

where each Hl may be efficiently simulated - i.e. there exists a known efficient gate decomposition
for Ul = exp(−ih̄Hlt). In the case that [Hl, Hl′ ] = 0 for all l and l′ we then have that

U = exp(−ih̄Ht) =
∏
l

exp(−ih̄Hlt) =
∏
l

Ul (4)

and the efficient gate decomposition for U is easily achieved via the known gate decompositions
for Ul. However in general it is not true that all constituent local Hamiltonians commute and
for this case Lloyd recognized that the Hamiltonian H could be efficiently simulated via a
discretization of time, where the errors resulting from such a discretization are bounded via the
Lie-Trotter product formula [3]. In particular, if H1 and H2 can be efficiently simulated, then
as a result of the Lie-Trotter formula

e−ih̄(H1+H2)t = lim
n→∞

(
e−ih̄H1t/ne−ih̄H2t/n

)n
, (5)

one has that ∣∣∣∣∣∣(e−ih̄H1t/ne−ih̄H2t/n
)n
− e−ih̄(H1+H2)t

∣∣∣∣∣∣ ≤ ε (6)

provided n = O((νt)2/ε) where ν := max{||H1||, ||H2||}. This result is easily extended to the
sum in Eq. 3 and provides an effective method, via time discretization, for the simulation of any
Hamiltonian which can be written as a sum of efficiently implementable Hamiltonians. Since this
initial result new digital simulation algorithms have been developed which have broadened the
class of Hamiltonians which may be simulated while simultaneously decreasing the algorithmic
costs [4]. However all such methods rely on the following fundamental strategy:

(i) Decompose the Hamiltonian H into a sum of Hamiltonians which can be efficiently
simulated, as in Eq. 3.

(ii) Simulate the Hamiltonian H through recombination of the constituent Hamiltonians, via a
Lie-Trotter product formula or suitable generalisation.

This methodology may be described as the Decomposition/Recombination strategy and in the
following section we illustrate how a similar strategy may be utilised for the digital simulation
of open quantum systems.

4. Digital simulation of open quantum systems
The problem considered in this section, to which we would like to apply the methodology
illustrated in Section 3, is that of simulating the dynamics of Markovian open quantum systems.
In particular, given a continuous one parameter semi-group of quantum channels {Tt} [8], where
Tt : B(Hs) → B(Hs) is a completely positive trace preserving map from and onto the bounded
operators on the Hilbert space of the system Hs

∼= Cd, we would like a digital simulation
algorithm which provides the state of the system at time t, given by ρ(t) = Tt[ρ(0)], where
ρ(0) ∈ B(Hs) is the initial state of the system [3]. Every such continuous one parameter
semigroup of quantum channels {Tt} has a unique generator

L : B(HS)→ B(HS) (7)
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such that

Tt = etL =
∞∑
k=0

tkLk
k!

(8)

and L satisfies the differential equation

d

dt
ρ(t) = L(ρ(t)), (9)

known as a master equation. Furthermore, a linear super-operator L : B(HS) → B(HS) is the
generator of a continuous dynamical semigroup of quantum channels, if and only if it can be
written in the form

L(ρ) = i[ρ,H] +
d2−1∑
k,l=1

Al,k([Fk, ρF
†
l ] + [Fkρ, F

†
l ]), (10)

where H = H† ∈ Md(C) is Hermitian, A ∈ Md2−1(C) is positive semidefinite and {Fi} is a
basis for the space of traceless matrices in Md(C). Eq. 10 is known as the Gorini, Kossakowsi,
Sudarshan and Lindblad form of the quantum Markov master equation and we refer to A as the
GKS matrix [8]. It is also crucial to note that for any quantum channel T : B(Hs) → B(Hs) it
is always possible to introduce a dilation space HE with dim(HE) = [dim(HS)]2 such that there
exists a unitary matrix U ∈Md3(C), known as the Stinespring dilation [8], where

T (ρ) = trE [U(|e0〉〈e0| ⊗ ρ)U †] (11)

and |e0〉〈e0| ∈ HE is some initial state of the environment. In light of the above the Kliesch et.
al. [9] have provided the following digital simulation algorithm for Markovian open quantum
systems, which can be seen as a direct generalisation Lloyd’s initial Hamiltonian simulation
algorithm [7] discussed in the previous section:

(i) Assume that the system consists of N subsystems of Hilbert space dimension d.
Furthermore, assume that the generator L is k-local in the sense that it can be written
as the sum

L =
∑

Λ⊂[N ]

LΛ (12)

where [N ] := {1, ..., N} and LΛ are strictly k-local, i.e. LΛ act non-trivially on at most
k-subsystems.

(ii) Simulate the total dynamics Tt = exp(tL) through recombination of the constituent channels

T
(Λ)
t/m = exp(t/mLΛ). Each constituent channel may be simulated via the Stinespring

dilation (whose unitary is guaranteed an efficient gate decomposition as a result of strict k-
locality) and the error introduced by such time discretization is bounded by the Trotter
decomposition theorem for Liouvillian dynamics [9], a direct generalisation of the Lie-
Trotter theorem into the superoperator regime.

The algorithm described above can be seen as the direct analogue of Lloyd’s initial Hamiltonian
simulation algorithm in that it assumes the existence of a natural decomposition into constituent
semi-groups which may be efficiently simulated, and then proves the efficiency of recombining
these semi-groups. Given this fundamental platform and the success of similar strategies for
digital simulation of Hamiltonian systems a general decomposition/recombination strategy is
naturally suggested for Markovian evolutions, specified not by strictly k-local generators, but
rather by generators with arbitrary GKS matrix A:
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(i) Decompose the generator L into the sum of generators which may be efficiently simulated.

(ii) Simulate the entire evolution through recombination of the constituent semi-groups via a
Lie-Trotter theorem for Liouvillian dynamics or some suitable generalisation.

One such generalised decomposition/recombination strategy, for the simulation of arbitrary
Markovian dynamics of a qubit, has recently been presented in [10] and as in Hamiltonian
simulation it is expected that the class of evolutions which may be simulated using this strategy
can still be greatly broadened while the algorithmic costs are simultaneously reduced.

5. Conclusion
We have provided a brief introduction to the field of quantum simulation. In particular we
have described the difference between analog and digital quantum simulations and provided a
description of how the decomposition/recombination strategy for the simulation of Hamiltonian
evolution may be generalised for the simulation of Markovian open quantum systems.
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