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Abstract. Unsharp measurements are a special class of generalized measurements whose
experimental potential has not as yet been fully explored. Unlike the usual projective
measurements which collapse the state of a quantum system into an eigenstate of the measured
observable, unsharp measurements have a weaker influence on the state of the system. These
types of measurements are advantageous when we need to gain information about a system
but the disturbance must not exceed a certain level. It is therefore useful to study the set
of unsharp measurements from first principles by reformulating the measurement postulate in
terms of generalized measurements. The necessary requirements of an unsharp measurement
are presented. A recent implementation scheme for unsharp measurements on trapped ions is
reviewed.

1. Introduction
In 1932, John von Neumann [1] formulated a rigorous description of what happens to a quantum
object when it is measured. The measurements he described are aptly named projective
measurements since the measurement process projects the initial state of the system into an
eigenstate of the measured observable. This eigenstate corresponds to the eigenvalue which was
identical to the measurement outcome. For example, if we measured the energy of an atom
in a projective measurement the outcome would be one of the quantized energies which are
characteristic for that atom. As we can see these measurements are highly accurate since the
measurement outcome is a definite and precise value which upon immediate repetition of the
measurement would occur again. They are therefore also known as ideal or sharp measurements.
However, the more accurate a measurement is, the greater is its disturbing influence on the
measured system. We may sometimes require information about a quantum system but only a
certain degree of disturbance may be acceptable. A possible example would be the real time
estimation and monitoring of the Rabi oscillations of a single atom in a resonant driving field.
Carrying out a sequence of projective measurements of the atomic energy would greatly disturb
the system and in the continuum limit they would lead to the Quantum Zeno effect, i.e. they
would freeze the dynamics of the system. An alternative are unsharp measurements which have a
weaker influence on the state of the system but still convey some information about an associated
ordinary observable, such as energy, position or spin. It has been shown that continuous
unsharp measurement allows us to monitor the Rabi oscillations in the aforementioned case [2].
Remarkably, this is even possible in the presence of noise [3].

This article serves as a concise introduction to generalized and unsharp measurements and
it is structured as follows. In Section 2, we reformulate the measurement postulate in terms



generalized measurements which is the set of all measurements possible within the limit of
quantum mechanics. The special properties of unsharp measurements are reviewed in Section
3 while Section 4 presents an implementation scheme for unsharp measurements on a trapped
ion. A short discussion is given in Section 5.

2. Generalizing the measurement postulate
The measurement postulate, as described by von Neumann, fully characterizes a projective or
sharp measurement and can be phrased as follows:

The result of a projective measurement of an observable A on a system prepared in the state
ρin will be one of the eigenvalues of the observable defined by, A|a〉 = a|a〉. The probability of
obtaining measurement result “a” reads

p(a, ρin) = Tr[Paρin] where Pa = |a〉〈a|, (1)

and the change of the state due to the measurement is given by

ρin → ρout =
1

p(a, ρin)
PaρinP

†
a . (2)

The eigenstates of the observable form a complete orthonormal set thus we have the completeness
relation

∑
a Pa = 1.

Projective measurements, however, only represent a restricted set of allowed measurements in
Quantum Mechanics. Furthermore, unsharp measurements often occur during the experimental
realization of projective measurements of observables such as energy, position and spin. This
is because projective measurements of these quantities are an idealization and do not take into
account measurement error which may result in the actual measurement being unsharp.

A more general description of measurements was introduced to Quantum Theory in the
1970, cp. [4]. In this framework the statistics of any quantum mechanical measurement can be
evaluated if the set of Effects, {Ea}, associated with the possible results, a, of the measurement
as well as the state of the system immediately before the measurement, ρin, are known. The
set of Effects forms a positive operator valued measure (POVM) [5] and each element Ea of
the set corresponds to the event of “measuring a”. Note that for projective measurements the
Effects {Ea} correspond to the projectors {Pa}. The probability for the result a to occur can
be calculated as

p(a, ρin) = Tr[Eaρin]. (3)

Unlike for projective measurements, however, knowing the Effects is in general not enough
to determine the state of the system after measurement; we further need to know the Kraus
measurement operators Mk which make up the POVM elements Ea, i.e.

Ea =
∑
k∈Ia

M †kMk (4)

where Ia is an index set associated with the measurement result a. The change of the state due
to the measurement is then given by

ρin → ρout =
1

p(a, ρin)

∑
k∈Ia

MkρinM
†
k . (5)

Generalized or POVM measurements play an important role in Quantum Theory since they
allow us to investigate fundamental question such as the information gain and state disturbance
trade-off. Furthermore they are useful in developing novel experimental schemes like the
quantum optical measurement of the number of photons in a cavity or the measurement of
the position of an atom in a standing light wave, cp. [5].



3. Unsharp measurements
A generalized measurement is called pure if to each measurement result a there corresponds
exactly one Kraus operator Ma. This preserves the purity of states in the so-called selective
regime of measurement; i.e. conditioned on a concrete measurement result, a pure state |ψ〉 is
mapped in the course of a measurement onto a pure state: |ψ〉 → Ma

N |ψ〉 where N ≡
√
〈ψ|Ea|ψ〉

is the norm of the state which is the square of the probability to obtain the measurement result.
The completeness relation then reads, ∑

a

M †aMa = 1. (6)

A measurement is called unsharp if, in addition, not all the Effects Ea = M †aMa are projectors
but the Effects must be mutually commutating,

[Ea, Eb] := EaEb − EbEa = 0 for all measurement results a, b. (7)

This restriction is necessary because it allows one to distinguish which Effect was measured. An
unsharp measurement thus has the same requirements as a projective measurement, except that
not all the Effects are projectors. 1

4. Scheme for implementing unsharp measurements
Now that the foundation has been laid, it is interesting to know how unsharp measurement can
be implemented in a realistic experiment. Implementation schemes for unsharp measurements
on trapped ions were recently demonstrated in [6]. We will briefly review one of these schemes
here. The intricate details of the ion traps are neglected in order to keep the discussion focused
and understandable.

One possible method for carrying out an unsharp measurement is through an ancilla system
as shown in [6]. The basic idea is as follows. Conventional quantum logic operations for ion traps
allow us to introduce weak entanglement (see below) between the target ion and an auxiliary
ion. A projective measurement carried out on the auxiliary ion then leads to a realization of an
unsharp measurement on the target ion.

We have two different species of ions trapped in the same ion trap so they share collective
vibrational (or phonon) modes. One is the target ion which we prepare in a coherent
superposition of its qubit levels

|ψ(0)
t 〉 = c1|gt〉+ c2|et〉 (8)

where |gt〉 and |et〉 are two hyperfine electronic ground levels and |c1|2 + |c2|2 = 1. We aim
to measure the z component of its effective spin σz, unsharply. For this purpose we choose to
implement two symmetric measurement operators

M0 =
√
p0|gt〉〈gt|+

√
1− p0|et〉〈et|, (9)

M1 =
√

1− p0|gt〉〈gt|+
√
p0|et〉〈et|, (10)

which satisfy the necessary requirements for an unsharp measurement mentioned in the preceding
section. The target ion must also have a third metastable excited state |rt〉, to assist with the
unsharp measurement. The second ion is the auxiliary ion which is used for sympathetic cooling
of the phonon modes as well as for implementing the unsharp measurement on the target ion.
Since the ions are of different species, the laser used to manipulate one ion does not affect the
other, thus the ions can be addressed independently.

1 Please note, that we consider unsharp measurements to be pure, while in the literature unsharp measurements
are just required to have commuting effects, cp. [5].



The state of the system of ions in the trap after the ground-state cooling on the auxiliary ion
can be described by

|ψ〉 = |ψ(0)
t 〉|ψa〉|0〉 = (c1|gt〉+ c2|et〉)|ψa〉|0〉 (11)

where |ψa〉 is the state of the auxiliary ion and |0〉 is vibrational ground state of the ions (i.e.
zero phonons). The measurement preparation proceeds by applying four laser pulses to the
target ion. The first pulse is a carrier pulse on resonance with the transition |gt〉 → |rt〉 for the
duration t = (2/Ω1) cos−1(

√
p0) where Ω1 is the Rabi frequency connecting |gt〉 and |rt〉, which

results in the state,

|ψ1〉 =
[
c1

(√
p0|gt〉+

√
1− p0|rt〉

)
+ c2|et〉

]
|ψa〉|0〉. (12)

The second pulse is a red sideband pulse between |gt〉 and |rt〉, which induces the transitions
|rt〉|n〉 → |gt〉|n + 1〉 and |gt〉|n〉 → |rt〉|n − 1〉 where n is the number of phonons. Hence the
two-ion state becomes

|ψ2〉 =
[
c1|gt〉

(√
p0|0〉+

√
1− p0|1〉

)
+ c2|et〉|0〉

]
|ψa〉. (13)

It is important to note that the component |gt〉|0〉 is unaffected because the state |rt〉| − 1〉
does not exist. The third pulse is again a carrier pulse but this one is on resonance with the
transition |et〉 → |rt〉 for the duration t = (2/Ω2) cos−1(

√
1− p0) where Ω2 is the Rabi frequency

connecting |et〉 and |rt〉, which leads to the state,

|ψ3〉 =
[
c1|gt〉

(√
p0|0〉+

√
1− p0|1〉

)
+ c2

(√
1− p0|et〉+

√
p0|rt〉

)
|0〉
]
|ψa〉. (14)

Finally, a red sideband pulse between |et〉 and |rt〉 yields,

|ψ4〉 =
[
c1|gt〉

(√
p0|0〉+

√
1− p0|1〉

)
+ c2|et〉

(√
1− p0|0〉+

√
p0|1〉

)]
|ψa〉, (15)

=
[(√

p0c1|gt〉+
√

1− p0c2|et〉
)
|0〉+

(√
1− p0c1|gt〉+

√
p0c2|et〉

)
|1〉
]
|ψa〉. (16)

Now, a projective measurement on the vibrational state in the basis {|0〉, |1〉} results in the
internal state of the target being either(√

p0c1|gt〉+
√

1− p0c2|et〉
)

(17)

or (√
1− p0c1|gt〉+

√
p0c2|et〉

)
. (18)

The projection measurement of the vibrational state is accomplished through a Quantum Logic
Spectroscopy measurement [7]. An unsharp measurement of σz is thus realized since this
sequence is equivalent to applying the measurement operators of Eqs. (9) and (10) on the initial
state of the target atom, i.e. Eq. (8).

5. Discussion
We introduced the concept of generalized measurements and reformulated the measurement
postulate in terms of them. The properties of unsharp measurements where presented and
an application of these measurements for a realistic experiment was demonstrated. Unsharp
measurements are an appropriate means to obtain information about an observable under the
constraint that the disturbance of a system must not exceed a certain level.
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