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Abstract. In this research, we are working with a formalism for quantum measurements that
takes special relativity into account. The ultimate goal is to modify this framework to work
with more general space-times rather than just Minkowski space-time and determine how the
metric would affect quantum entanglement by doing calculation of Bell’s Theorem in curved
space-time. As a first step in that direction, in this paper, we calculate the case for quantum
measurements along an accelerated world line by solving the Schwinger-Tomonaga equation.

1. Introduction

Most of modern physics can be described either within the framework of general relativity
or within the framework of quantum mechanics. General relativity describes one of the four
fundamental forces, gravitation, as a warpage of space-time whereas the other three, namely
the electromagnetic, and the strong and weak nuclear forces can be adequately described within
the framework of quantum mechanics. However, combining general relativity with quantum
mechanics in order to formulate a theory of quantum gravity has proven difficult. The ultimate
goal of the current work is to modify a framework of relativistic quantum mechanics, though not
full quantum field theory, such that it includes metrics other than the Minkowski metric as the
space-time background. This relativistic framework was formulated by Breuer and Petruccione
[1] [2]. The goal is also to determine what the effect of the space-time background, if any, is on
the measurements of entangled particles.

This paper summarises the framework, both non-relativistic and relativistic. In the non-
relativistic case, the framework is a statistical multi-particle formalism of quantum mechanics
which is formulated in terms of probabilities and allows for interactions between different
quantum particles. The ultimate goal of this research is to extend this special relativistic
framework to work with curved space-time backgrounds and then find out what, if any, effect
the metric itself has on the phenomenon of quantum entanglement. That means to work with
more generalised space-time backgrounds rather than just Minkowski space-time.

2. Background

The non-relativistic framework is mainly governed by the Schrödinger equation,

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (1)

there are three different formulations, namely the Schrödinger picture, the Heisenberg picture
and the Interaction picture. In the Schrödinger picture, the state vectors evolve in time, while



the operators remain consistent with respect to time. The solution to the Schrödinger equation
may be exposed in terms of the unitary time-evolution operator U(t, t0) that transforms the
state vector |ψ(t0)〉 at some initial time t0 to the state |ψ(t)〉 at time t:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (2)

If we substitute equation (2) into the Schrödinger equation (1), we get the differential equation

i
∂

∂t
U(t, t0) = H(t)U(t, t0), (3)

where we take the initial condition as U(t0, t0) = I with I as the identity. For a closed
isolated system, the differential equation (3) can be integrated to yield the solution

U(t, t0) = exp [−iH(t− t0)] . (4)

For a time-dependent Hamiltonian, the solution to equation (3) subject to the initial condition
above, is

U(t, t0 = T← exp

[

−i
∫ t

t0

dsH(s)

]

, (5)

where T← is the chronological time-ordering operator that order the products of time
dependent operators from right to left, in the direction of the arrow. If the system is in a
mixed state, then the quantum statistical ensemble may be characterised with the help of the
statistical operator ρ, which is the generalisation of the density operator to include continuous
spectra.

On the other hand, the operators in the Heisenberg picture evolve in time while the state
vectors remain constant with respect to time. The Schrödinger and Heisenberg pictures are
related to each other and the Schrödinger picture can be converted to the Heisenberg picture
by transferring the time dependence of the state vectors to the operators. So, if A(t) is an
observable represented in the Schrödinger picture, then it can be converted to the Heisenberg
picture by,

AH(t) = U †(t, t0)A(t)U(t, t0) (6)

where U(t, t0) = T← exp
[

−i
∫ t

t0
dsH(s)

]

is the time evolution operator with T← as the

chronological time ordering operator.
A given Schroedinger operator A(t) can be transformed into the Heisenberg equivalent AH(t)

by the relation (6). The two pictures are assumed to coincide at initial time t0, such that
AH(t0) = A(t0). The Heisenberg equation of motion can be derived straightforwardly from the
transformation law (6) by differentiating both sides of the equation, from which we obtain

d

dt
AH(t) = i [HH(t), AH (t)] +

∂AH(t)

∂t
, (7)

where HH(t) = U †(t, t0)H(t)U(t, t0) is the Hamiltonian in the Heisenberg picture, d
dt

is the

total time derivative and ∂
∂t

is the partial time time derivative with respect to the explicit time
dependence of the Schrödinger operator.

The Schrödinger and Heisenberg pictures are limiting cases of a more general formulation
called the Interaction picture, where both state vectors and operators can evolve in time. The
Interaction picture is more useful in this context because it can more easily deal with the changes
to wave functions and observable due to interactions. Thus, with the Interaction picture one can
construct solutions to the many-body Schrödinger equation, usually as the solution to the free



particle problem plus an interaction term. The Hamiltonian can be given by H(t) = H0+ ĤI(t),

where ĤI(t) is Hamiltonian of the interaction between the systems. Then, if we introduce the

unitary time evolution operators as U0(t, t0) ≡ exp [−iH0(t− t0)] and UI(t, t0) ≡ U
†
0U(t, t0),

then we convert an operator A(t) in the Schrödinger picture representation to the equivalent
form in the Interaction picture by the relation:

AI ≡ U
†
0 (t, t0)A(t)U0(t, t0) (8)

The Interaction picture time evolution operator is the solution to the differential equation

i
∂

∂t
UI(t, t0) = HI(t)UI(t, t0) (9)

and the Interaction picture Hamiltonian is given by

HI(t) ≡ U
†
0(t, t0)ĤI(t)U0(t, t0). (10)

In the relativistic case, we work with a framework where the quantum system is represented
as a functional on the set of space like hypersurfaces in Minkowski space. In the relativistic
framework we can denote the coordinates of a point x in Minkowski space-time as the four-
vector xµ = (x0, x̂), where x0 = t is the time coordinate and ~x = (x1, x2, x3) are the space
coordinates. We use the units such that ~ = c = 1 where ~ is Planck’s constant and c is the
speed of light. The Lorentz invariant inner product of two four-vectors x and y is given by

xy = xµyµ = ηµνx
µyν = x0y0 − ~x · ~y (11)

where ηµν is the Minkowski metric tensor. The state vector |Ψ(t)〉 evolves in the Interaction
picture according to the Schrödinger equation

∂

∂t
|Ψ(t)〉 = −iHI |Ψ(t)〉 , (12)

where the Interaction Hamiltonian is given by

HI =

∫

d3xH(t, ~x) (13)

with H(x) = H(t, ~x) as the Hamiltonian density of the theory. The state vector |Ψ(t)〉 gives
the state of a quantum system at a fixed time x0 = t and so allows the evaluation of expectation
values of observables on the three dimensional hyper surface at constant t. The Lorentz invariant
generalisation of this concept is that of a state vector associated with a general three dimensional
space-like hypersurface σ which is also a manifold in Minkowski space. Therefore, the state vector
becomes a functional |Ψ〉 = |Ψ(σ)〉 on the space of all such hypersurfaces. The Schrödinger
equation (12) then becomes a functional differential equation, called the Schwinger-Tomonaga
equation (50) [3] [4] [5] [6].

3. Statistical formulation of non-relativistic quantum mechanics

In quantum mechanics, the state of a closed physical system is described by the wave function
ψ, also given as the state vector, represented by the ket |ψ〉, which is an element of a Hilbert
space H. The observables are represented as linear self-adjoint operators in the Hilbert space.
An important theorem regarding self-adjoint operators is the spectral theorem, which is a
generalisation of the eigenvalue theorem in linear algebra to operators in general. The spectral
theorem states that for any self-adjoint operator R̂, there is a spectral family Er such that



R̂ =

∫ ∞

−∞
rdEr. (14)

The spectral family Er, where r ∈ R, is a one-parameter family of commuting orthogonal
projection operators such that they are monotonically increasing, Er′ > Er for r

′ > r, continuous
from the right, lim

ǫ→+0
Er+ǫ = Er, and has the limits lim

r→−∞
Er = 0 and lim

r→∞
= I, where I is the

identity operator.
The spectral decomposition (14) is important for the statistical interpretation of quantum

mechanics. For the statistical interpretation of quantum mechanics, consider a statistical
ensemble E = {S(1), S(2), . . . , S(N)}, where S(1), S(2), . . . , S(N) are identically prepared quantum
systems. Given the ensemble E , the statistical interpretation of quantum mechanics is based on
two postulates. The first postulate is that under certain conditions, a complete characterisation
of the statistical ensemble is given by a normalised state vector |ψ〉 in the Hilbert space H of
the quantum mechanical system. The second postulate is that the measurable quantities of the
statistical ensemble E are represented by self-adjoint operators in the Hilbert space H. So, if
we make measurements of an observable R̂, performed on the ensemble characterised by |ψ〉,
then the outcomes of those measurements represent a real-valued random variable R with a
cumulative distribution function FR(r), given by

FR(r) = 〈ψ |Er|ψ〉 (15)

where Er is the spectral family of R̂. By means of the distribution function (15), one can
define the probabilities for more general events. If B denotes a Borel set of R, then we can
define a projector operator as

E(B) =

∫

B

dEr, (16)

such that the probability of the measurement outcome falling into the set B is given by

PR(B) = 〈ψ |E(B)|ψ〉 , (17)

where Er is, again, the spectral family of the operator R̂. Here, the projection of the union
of any sequence of disjoint Borel sets Bi is equal to the sum of the individual projections,

E(
⋃

i

Bi) =
∑

i

E(Bi). (18)

Therefore, if we apply a equation (17) to the relation (18), we find that a similar relation
holds for the probability of the union of self-adjoint Borel sets,

PR(
⋃

i

Bi) =

〈

ψ

∣

∣

∣

∣

∣

∑

i

E(Bi)

∣

∣

∣

∣

∣

ψ

〉

=
∑

i

〈ψ |E(Bi)|ψ〉 =
∑

i

PR(Bi). (19)

So, the random variable R that results from the the outcomes of measurements on the
observable R̂ with the distribution function (15) also describes the probabilities for all possible
measurement outcomes. Using the spectral decomposition, the mean value of R is given by

E(R) =

∫ ∞

−∞
rdFR(r) =

∫ ∞

−∞
r 〈ψ |Er|ψ〉 =

〈

ψ
∣

∣

∣
R̂
∣

∣

∣
ψ
〉

. (20)

Therefore, the variance of R is given by



Var(R) = E(R2)− [E(R)]2 =
〈

ψ
∣

∣

∣
R̂2

∣

∣

∣
ψ
〉

−
〈

ψ
∣

∣

∣
R̂
∣

∣

∣
ψ
〉2
. (21)

The above analysis of quantum statistical ensembles only applies to pure states. In order
to obtain more general ensembles, including those of mixed states, consider a number M of
ensembles E1, E2, . . . , EM , all of the same type as described above and each being described by a
normalised state vector ψα, α = 1, 2, . . . ,M in the Hilbert space H. The statistics of the total
ensemble E is then obtained my mixing all the constituent ensembles Eα with respect to their
statistical weights wα which satisfy the condition

wα > 0,

M
∑

α=1

wα = 1. (22)

We mix the ensembles by taking a large number Nα of systems from each of the ensembles
Eα. The total number of systems, N =

∑

αNα, then makes up the new ensemble E with the

statistical weights given by wα = Nα

N
. Measurements of an observable R̂ on the ensemble E now

produces the random variable R with the distribution function

FR(r) =
∑

α

wα 〈ψα |Er|ψα〉 . (23)

According to equation (20), the mean is then given by

E(R) =
∑

α

wα

〈

ψα

∣

∣

∣
R̂
∣

∣

∣
ψα

〉

. (24)

These formulae can be written more concisely if we introduce the quantum mechanical
analogue of the phase-space probability measure in classical statistical mechanics, called the
density matrix. The density matrix is defined as

ρ =
∑

α

wα |ψα〉 〈ψα| . (25)

In terms of the density matrix, the distribution function (23) can now be re-written as

FR(r) = tr{R̂ρ}, (26)

where the trace of an operator A is defines as tr(A) =
∑

i 〈ϕi |A|ϕi〉 and {ϕi} as an
orthonormal basis of the Hilbert space H. Likewise, the analogue of the mean and variance
of the random variable R, equations (20) and (21) respectively, in the new ensemble E are given
by

E(R) = tr{R̂ρ} (27)

and

Var(R) = tr{R̂2ρ} −
[

tr{R̂ρ}
]2

(28)

respectively.



4. Quantum Measurements

In an ideal measurement in quantum mechanics, if a property B with corresponding projection
operator E(B) is measured on a quantum statistical ensemble E described by density matrix ρ,
then after the measurement, we find that the density matrix ρ′ which describes the ensemble E ′
that consists of the systems for which the property B is found to be true is given by

ρ′ =
E(B)ρE(B)

tr{E(B)ρE(B)} , (29)

where the projection operator E(B) is defined in terms of the spectral family of R̂ by equation
(17). Equation (29) is called the von Neumann-Lüders projection postulate [7] [8]. The above

describes the ideal measurement of the projection E(B) derived from the spectral family of R̂
but in practice one can only measure an approximation that involves the finite resolution of
the detector. If we consider a measurement scheme which yields a set M of possible outcomes
m ∈ M, then the von Neumann-Lüders projection postulate (29) can be generalised as follows:

(i) The measurement outcome m represents a classical random number with probability
distribution

P (m) = tr{Fmρ}, (30)

where Fm is a positive operator, called the effect, which satisfies the normalisation condition

∑

m∈M

Fm = I, (31)

such the the probability P (m) is also normalised as

∑

m∈M

P (m) = 1. (32)

(ii) In the case of a selective measurement, the sub-ensemble of the systems for which the
outcome m has been found to described by the density matrix

ρ′m = P (m)−1Φm(ρ), (33)

where Φm = Φm(ρ) is a positive super-operator, called an operation, and it maps positive
operators to positive operators. We also assume that the operation Φm obeys the condition

trΦm(ρ) = tr{Fmρ}. (34)

Equation (34) together with equation (30) yields the normalisation

trρ′mP (m)−1trΦm(ρ) = 1. (35)

(iii) The density matrix for the corresponding non-selective measurement is given by

ρ′ =
∑

m∈M

P (m)ρ′m =
∑

m∈M

Φm(ρ), (36)

which is normalised according to equations (34) and (31) as

trρ′ =
∑

m∈M

trΦm(ρ) =
∑

m∈M

tr{Fmρ} = trρ = 1. (37)



An important measurement scheme which can be treated within the framework of the
generalised theory of quantum measurements above is the concept of an indirect measurement.
Instead of measuring the system we want to measure directly, in an indirect measurement, we
perform the measurement on what we will call a quantum probe that has interacted with the
system at some point. We may then determine the state of the object we want to measure via
correlations with the probe which has resulted from the interaction. An indirect measurement
can thus be considered to be consisting of three elements. The three elements are the quantum
system to be measured, called the quantum object and has a Hilbert space HO, the quantum
probe with Hilbert space HP and a classical apparatus by which a measurement is performed
on the quantum probe following it’s interaction with the quantum object. Thus for an ideal
measurement, we have three requirements. The first requirement is that prior to the interaction,
and at time t = 0, the probe is prepared in a well defined quantum state ρP while the quantum
object is in a state ρO. The second requirement is that the the measurement takes place after
the interaction is over. So, the interaction between the probe and object may start at time t = 0
and end at time t = τ > 0 but the measurement may only take place after the interaction has
ended. The third requirement is that the measurement on the probe by the classical apparatus
can be described as an ideal measurement by the von Neumann-Lüders projection postulate
described above.

At the initial time t = 0, the density matrix of the combined system consisting of both
probe and object is given by the tensor product ρO ⊗ ρP in the total Hilbert space given by
H = HO ⊗HP . The Hamiltonian of the total system is given by

H(t) = HO +HP +HI(t), (38)

where HO and HP , describe the free evolution of the object and probe respectively. The
HI(t) term describes the evolution due to the interaction between the object and the probe.
Outside the interaction time interval, [0, τ ], the term HI(t) vanishes. The time evolution over
this time interval according to the Schrödinger equation can be described by a unitary operator
called the time-evolution operator. It is given by

U ≡ U(τ, 0) = T← exp

[

−i
∫ τ

0
dtH(t)

]

, (39)

where T← is the chronological time-ordering operator, and we have used units such that ~ = 1.
If we assume ρ(0) = ρO⊗ρP to be the initial density matrix, then in terms of the time-evolution
operator, the density matrix at time τ is given by

ρ(τ) = U(ρO ⊗ ρP )U
†. (40)

5. The Schrödinger, Heisenberg and Interaction Pictures

The equation of motion for the density matrix is called the Liouville-von Neumann equation
and can be derived straightforwardly starting from the Schrödinger equation (1). To see this,
consider the initial density matrix

ρ(t0) =
∑

α

wα |ψα(t0)〉 〈ψα(t0)| . (41)

The state of the system at the time t is then given in terms of the time-evolution operator as

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0). (42)

We get the Liouville-von Neumann equation by differentiating (42) with respect to time,
which is given as



d

dt
ρ(t) = −i [H(t), ρ(t)] . (43)

The Lioville-von Neumann equation (43) can be written more concisely if we introduce the
Liouville operator defined as L(t)ρ(t) = −i [H(t), ρ(t)],

d

dt
ρ(t) = L(t)ρ(t). (44)

Integrating equation (44), we get the interral form of the Liouville-von Neumann equation,
which is given as

ρ(t) = T← exp

[
∫ t

t0

dsL(s)
]

ρ(t0). (45)

In the above expressions, the density matrix evolves in time according to the Liouville-von
Neumann equation but the operators or observables in the Hilbert space H is constant. We
can obtain an equivalent representation by transferring the time dependance from the density
matrix to the operators. The interaction picture density matrix is given by

ρI(t) ≡ UI(t, t0)ρ(t0)U
†
I (t, t0). (46)

Differentiating this by both sides, the corresponding Liouville-von Neuman equation for the
Interaction picture density matrix is given by

d

dt
ρI(t) = −i [HI(t), ρI(t)] . (47)

Integrating the differential equation (47), we get the equivalent integral form

ρI(t) = ρI(t0)− i

∫ t

t0

ds [HI(s), ρI(t)] . (48)

Unlike the for Heisenberg picture operators, the time-evolution of the Interaction picture
operators are not generated by the full Hamiltonian H but only by the free part H0. If the
interaction part is zero, i.e ĤI(t) = 0, then we have H0 = H, such that U0(t, t0) = U(t, t0) and
UI(t, t0) = I and so the Interaction picture becomes identical to the Heisenberg picture. On the

other hand, if H0 = 0, then we have ĤI(t) = H(t) such that U0(t, t0) = I and UI(t, t0) = U(t, t0)
so that it becomes identical to the Schrödinger picture.

6. Relativistic Quantum Mechanics

In the relativistic framework, everything is re-formulated in terms of four-vectors with a
Minkowski background. Here the four-vector xµ = (x0, ~x) represents the space-time coordinates
of an event x in Minkowski space-time and we use the symbol ηµν to represent the Minkowski
metric. The Interaction picture representation of the Schrödinger equation (12) is used with the
Interaction Hamiltonian defined as in equation (13), where H(t, ~x) is the Hamiltonian density.
In a given fixed coordinate system, the vector |Ψ(t)〉 gives the state of a quantum mechanical
system at each time x0 = t and so allows the evaluation of expectation values for all observables
which are localised on the hypersurface x0 = t = constant in Minkowski space-time. In order to
get a Lorentz invariant generalisation of this concept, consider a state vector associated with a
three-dimensional space like hypersurface σ which is defined as a manifold in Minkowski space
that extends to infinity in all directions. Consider further that at each point x ∈ σ on the
hypersurface, there exists a unit, timelike normal vector nµ(x) satisfying the normalisation



nµ(x)n
µ(x) = 1, n0(x) > 1. (49)

The state vector then becomes a functional |Ψ〉 = |Ψ(σ)〉 in the space of all such hypersurfaces.
The same is true of the density mateix of the system which is given as the functional ρ = ρ(σ).
The generalisation of the Schrödinger equation (12) in this relativistic framework is thus a
functional differential equation and is given by the Schwinger-Tomonaga equation, which is
given by

δ |Ψ(σ)〉
δσ(x)

= −iH(x) |Ψ(σ)〉 . (50)

A similar generalisation also present the form for the Liouville-von Neumann equation is is
given by

δ |Ψ(σ)〉
δσ(x)

= −i [H(x), ρ(σ)] . (51)

In direct analogy to partial differential equations, the Schwinger-Tomonaga equation is
subject to the integrability condition

δ2ρ(σ)

δσ(x)δσ(y)
− δ2ρ(σ)

δσ(y)δσ(x)
= [[H(x),H(y)] , ρ(σ)] = 0, (52)

where the points x and y are located on the same hyper surface σ. This integrability condition
is a direct consequence of the requirement of the micro causality of the Hamiltonian density which
state that H(x) and H(y) must commute if x and y are space like separated, i.e [H(x),H(y)] = 0
for (x − y)2 < 0. This integrability condition insures that the Schwinger-Tomonaga equation
has a unique solution ρ(σ) once one has chosen an appropriate initial density matrix ρ(σ0) for
an initial hypersurface σ0. This solution is normally given as

ρ(σ) = U(σ, σ0)ρ(σ0)U
†(σ, σ0), (53)

where U(σ, σ0) is the generalisation of the unitary time-evolution operator given by

U(σ, σ0) = T← exp

[

−i
∫ σ

σ0

d4xH(x)

]

, (54)

where T← is the chronological time-ordering operator, as usual.
A foliation of Minkowski space is defined as a smooth one-parameter family F = {σ(τ)}

of space like hypersurfaces σ(τ) with the property that each space-time point x is located on
precisely one hypersurface of the family. A given foliation σ(τ) gives rise to a corresponding
family of state vectors |Ψ(τ)〉 = |Ψ(σ(τ))〉. The Schwinger-Tomonaga equation (50) can then be
re-formulated as an integral equation

|ψ(τ)〉 = |Ψ(0)〉 − i

∫ σ(τ)

σ0

d4xH(x) |Ψ(σx)〉 , (55)

where we have denoted σx = σ(τ) for exactly one parameter value τ .
The hypersurfaces σ(τ) of a foliation can be defined with the help of an implicit equation of

the form

f(x, τ) = 0, (56)

where f(x, τ) is a smooth scalar function. With an appropriate normalisation of f , the unit
normal vector can be assumed to be given by



nµ(x) =
∂f(x, τ)

∂xµ
. (57)

Consider two infinitesimally separated hypersurfaces corresponding to two parameter values
τ and τ+dτ . Then d |Ψ(τ)〉 = |Ψ(τ + dτ)〉−|Ψ(τ)〉, which according to equation (55) is therefore

d |Ψ(τ)〉 = −i
∫ σ(τ+dτ)

σ(τ)
d4xH(x) |Ψ(τ)〉 . (58)

The four-volume element d4x can be re-written as d4x = dσ(x)
∣

∣

∣
n0

∂x0

∂τ

∣

∣

∣
dτ = dσ(x)

∣

∣

∣

∂f
∂τ

∣

∣

∣
dτ .

Substituting this into equation (58) and dividing both sides by dτ , we get

d

dτ
|Ψ(τ)〉 = −i

∫

σ(τ)
dσ(x)

∣

∣

∣

∣

∂f

∂τ

∣

∣

∣

∣

H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉 . (59)

For a particular example, let’s consider an observer O moving along a straight world line
y(τ) = nτ with constant velocity ~v such that

n =
dy

dτ
= (γ, γ~v), (60)

where γ = 1√
1−|~v|2

. Here we can see that n is the four-velocity of O. Here, the parameter

τ is the proper time of the observer O, or the time measured by a clock carried along the
world line y(τ) by O. At each fixed value of τ , the time axis in the rest frame of observer O
is in the direction of the unit vector n while the instantaneous three-space at τ is given by the
flat, spacelike hypersurface σ(τ) which is orthogonal to n and contains the point y(τ). So, the
function f (56) is then defined as

f(x, τ) ≡ n(x− y(τ)) ≡ nx− τ = 0. (61)

We see that the hypersurface σ(τ) consists of all the space-time points x with which the

observer O assigns the same time coordinate τ . Since
∣

∣

∣

∂f
∂τ

∣

∣

∣
= |−1| = 1, equation (59) then

becomes

d

dτ
|Ψ(τ)〉 = −i

∫

σ(τ)
dσ(x)H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉 . (62)

In the coordinate system where the normal vector n coincides with the time axis, i.e
nµ = (1, 0, 0, 0), then equation (62) becomes identical to the Schrödinger equation (12).

On the other hand, the term
∣

∣

∣

∂f
∂τ

∣

∣

∣
6= 1 in general, equation (62) only applies if the observer

O travels along a straight world-line with constant four-velocity n.
Now that the formalism has been established, we proceed to develop it to allow for more

general space-times. As discussed in the Abstract, the first step is to extend the formalism
based on a straight world line to an accelerated world line. If we allow for acceleration such

that n(τ) varies in time, then we have to include a different value for
∣

∣

∣

∂f
∂τ

∣

∣

∣
in general. To take

another example, let’s consider the case of the observer O moving in a uniformly accelerating
frame. In other words, the reference frame of the observer O is such that there is a constant
non-zero three-acceleration ~a measured from within that frame. If we again assume that the
unit normal vector n(τ) is the four-velocity, then the four-acceleration is given by

aµ(τ) =
dnµ(τ)

dτ
. (63)



Now, since the four-velocity is always normalised as nµ(τ)nµ(τ) = ηµνn
µ(τ)nν(τ) = 1, we

also have d
dτ
(nµ(τ)n

µ(τ)) = 2nµ(τ)a
µ(τ) = 0. Therefore any four-acceleration is orthogonal

to the corresponding four-velocity at a given time τ , i.e. aµ(τ)nµ(τ) = 0 at all times τ . In
the observer frame O, the unit normal vector n coincides with the time axis. Therefore the
four-velocity of O is nµ = (1, 0, 0, 0) when measured with respect to it’s own reference frame,
while the four-acceleration is given by aµ = (0,~a). Noting that the magnitude of the four-
acceleration as measured in the observer frame O is |(0,~a)| = |~a| = a, the only way to make
sure that the acceleration of O remains uniform is to insure that the magnitude of the four-
acceleration remains constant at a. Using the fact that aµ and nµ are orthogonal, we obtain for
the four-acceleration,

aµ(τ) = (a sinh(aτ),
a

|~a| cosh(aτ)~a), (64)

and for the four-velocity,

nµ(τ) = (cosh(aτ), |~a|−1 sinh(aτ)~a), (65)

such that aµaµ = a2(sinh2(aτ) − cosh2(aτ)) = −a2, aµnµ = 0 and nµnµ =
cosh2(aτ) − sinh2(aτ) = 1. The observer therefore follows a hyperbolic world-line y(τ) =
(a−1 sinh(aτ), a−1 |~a|−1 cosh(aτ)~a) and the function (56) is given by f(x, τ) ≡ n(τ)(x− y(τ)) =

n(τ)x = 0. Therefore
∣

∣

∣

∂f
∂τ

∣

∣

∣
= |aµ(τ)xµ| and so the Schwinger-Tomonaga equation (59) for the

case of an accelerated world line now becomes

d

dτ
|Ψ(τ)〉 = −i

∫

σ(τ)
dσ(x) |aµ(τ)xµ| H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉 . (66)

7. Conclusion

The main part of this paper provides an overview of a framework for special relativistic quantum
mechanics, although it is not full quantum field theory. It describes a statistical interpretation
of non-relativistic quantum mechanics for multi-particle systems and then proceeds to use
that interpretation to describe a theory of quantum measurement. The framework was then
generalised to a framework for special relativistic quantum mechanics. This framework was
initially formulated by Breuer and Petruccione [1].

As shown above, we have derived the form of the Schwinger-Tomonaga equation for the case
where the observer frame O is moving at constant velocity in special relativity. In our new work,
we derived the form in the case of uniform acceleration.

Our next step will be to derive Bell-state measurements within the framework before
attempting to introduce more general metrics into the framework other than the Minkowski
metric.
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