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Introduction
• Working with a framework for relativistic

quantum mechanics

• Not full quantum field theory

• Ultimate goal is to extend framework to include
curved space times

• First step is to work with accelerated world-lines
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Statisitical Interpretation of Quantum

Mechanics
• Spectral theorem:

• For any operator R̂, there exists a unique spectral family Er such that

R̂ =
∫∞
−∞ rdEr , where:

• Er′ > Er for r′ > r.

• limǫ→+0 Eǫ+r = Er .

• limr→−∞ Er = 0 and limr→+∞ Er = I , where I is the identity.

• {∀r |
[

Er , R̂
]

= 0} and the domain of R̂ is given by

D(R̂) = {ψ ∈ H |
∫ +∞
−∞ d〈ψ |Er|ψ〉 <∞}, where

∫+∞
−∞ r2d〈ψ |Er|ψ〉 =

∫+∞
−∞ r2d‖Erψ‖2 = ‖R̂‖2.

• Consider statistical ensemble ǫ = {S(1), S(2), · · · , S(N)}, where S(1), S(2), · · ·S(N)

are identical quantum systems.

• Postulate 1: Under certain conditions, a complete characterisation of ensemble is

given by state a state vector |ψ〉 in Hilbert space H.

• Postulate 2: Measurable quantities in the statistical ensemble are represented by

self-adjoint operators in the Hilbert space H.
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Statistical mixtures
• Consider M ensembles ǫ1, ǫ2, · · · ǫM , each described by a

normalised state vector ψα, α = 1, 2, · · · ,M .

• For total ensemble with weights

wα > 0,
∑M

α=1wα = 1, operator R̂ yields cumulative

distribution function FR(r) =
∑

αwα〈ψα

∣

∣

∣
R̂

∣

∣

∣
ψα〉

where Er is the spectral decomposition.

• For mean value of R, E(R) =
∑

α wα〈ψα

∣

∣

∣
R̂

∣

∣

∣
ψα〉

• Introduce density matrix, ρ =
∑

αwα |ψα〉 〈ψα|

• Distribution function can then be written as FR = tr{Erρ}

Quantum measurements along accelerated world-lines – p. 4/11



Indirect quantum measurements

An indirect measurement of a quantum system
consists of 3 elements:

• The Quantum system to be measured.

• The quantum probe.

• A classical measurement device with which to
perform a measurement on the quantum probe
after it has interacted with the quantum system.
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Schröedinger, Heisenberg and Interac-

tion pictures
• The Schröedinger picture:

• The state vector |ψ(t)〉 evolves in time according to the Schröedinger equation

i d
dt

|ψ(t)〉 = H(t) |ψ(t)〉
• The Schröedinger equation in terms of the time evolution operator U(t, t0), which

evolves the state vector from an initial time to a later time, is given by

i ∂
∂t
U(t, t0) = H(t)U(t, t0), where the state vector is given by

|ψ(t)〉 = U(t, t0) |ψ(t0)〉.
• The time evolution operator is given by U(t, t0) = T← exp

[

−i
∫ t
t0
dsH(s)

]

• The density matrix evolves in time according to the equation
d
dt
ρ(t) = −i [H(t), ρ(t)] = L(t)ρ(t)

• The Heisenberg picture is obtained by transferring the time dependence from the density

matrix to the operators in the Hilbert space.

• The Heisenburg picture is related to the Schröedinger picture by

AH(t) = U†(t, t0)A(t)U(t, t0), where A(t) is an arbitrary observable.

• The Heisenberg and Schröedinger pictures are limiting cases of the Interaction picture

• The Hamiltonian can be written as H(t) = H0 + ĤI(t)
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Measurements in Relativistic Quan-

tum Mechanics
• Consider xµ = (x0, ~x)

• The state vector is then associated with a 3-dimensional spacelike hypersurface σ

as a manifold on Minkowski space-time where at each point x ∈ σ there’s a

normal unit vector satisfying nµ(x)nµ(x) = 1, n0 > 1

• The state vector is then given by the functional |Ψ〉 = |Ψ(σ)〉
• Similarly, the density matrix is given by the functional ρ = ρ(σ)

• The Schwinger-Tomonaga equation:

• The Schwinger-Tomonaga equation is given by
δ|Ψ(σ)〉
δσ(x)

= −iH(x) |Ψ(x)〉

• Or for the density matrix
δρ(σ)
δσ(x)

= [H(x), ρ(σ)]

• If the foliation σ(τ) gives rise to a corresponding family of state vectors

|Ψ(τ)〉 = |Ψ(σ(τ))〉 then the Schwinger-Tomonaga equation can be re-written as

|Ψ(τ)〉 = |Ψ(0)〉 − i
∫ σ(τ)
σ0

d4xH(x) |Ψ(σx)〉
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Foliations on Minkowski Space-Time

• The hyper surfaces σ(τ) of a foliation can be

defined with the help of a function f(x, τ) = 0

• With an appropriate normalisation of f , the

normal vector nµ(x) at the point x ∈ σ(τ) is

given by nµ(x) =
∂f(x,τ)
∂xµ .

• The Schwinger-Tomonaga equation is then

d
dτ
|Ψ(τ)〉 = −i

∫

σ(τ) dσ

∣

∣

∣

∂f
∂τ

∣

∣

∣
H(x) |Ψ(τ)〉 ≡

−iH(τ) |Ψ(τ)〉

Quantum measurements along accelerated world-lines – p. 8/11



Measurements along straight world-

lines
• If a measurement is along a world-line y(τ) = nτ with constant speed v, then

f(x, τ) ≡ nx− τ = 0 and the 4-velocity of observable O is n = dy
dτ

= (γ, γ~v) with

γ = 1√
1−|~v|

.

• The instantaneous 3-space at fixed τ is given by the hypersurface σ(τ), orthogonal to n

and contains the point y(τ), which is define by n(x− y(τ)) ≡ nx− τ = 0.

• For constant velocity of observer O,

∣

∣

∣

∂f
∂τ

∣

∣

∣
= 1, therefore the Schwinger-Tomonaga

equation becomes d
dτ

|Ψ(τ)〉 = −i
∫

σ(τ) dσ(x)H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉.
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Measurements along accelerated

world-lines
• In general, for an accelerated world line y(τ), f(x, τ) ≡ n(τ)(x− y(τ)) = 0

• The instantaneous 3-space at fixed τ is again given by the hypersurface σ(τ),

orthogonal to n.

• The term

∣

∣

∣

∂f
∂τ

∣

∣

∣
6= 1 in general, so it must be taken into account.

• Consider the case of uniform acceleration a with the 4-acceleration given as a(τ) = dn
dτ

:

• d
dτ

[n(τ)]2 = 2nµ(τ)aµ = 0 since nµn
µ = 1, so nµ(τ)aµ(τ) = 0 for all n

and a.

• Therefore, world line follows a hyperbolic path with

y(τ) = a−1 sinh(aτ)t̂+ a−1 cosh(aτ)x̂ and n(τ) = cosh(aτ)t̂+ sinh(aτ)x̂,

so n(τ)y(τ) = 0 and

∣

∣

∣

∂f
∂τ

∣

∣

∣ = |a(τ)x|.
• The Schwinger-Tomonaga equation is then

d
dτ

|Ψ(τ)〉 = −i
∫

σ(τ) dσ(x) |a(τ)x|H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉
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Conclusion and future plans

• Able to do measurements by observers moving
along accelerated world-lines.

• Will try to calculate measurements of Bell states
with current formalism.

• Will try to work with metrics other than the
Minkowski metric to extend formalism to curved
space-time.
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