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Abstract. The property of concavity in calculations of energy surfaces is developed and
discussed, in reference to strict energy minimisation when collective coordinates are constrained.
Such collective coordinates are actually subject to quantum fluctuations and these prevent, via
tunnel effects, the probing of maxima and saddle points. A solution to the problem is developed.
It allows to bypass the concavity syndrome and recover maxima and saddle points.

1. Introduction
For practical calculations in many-body physics, be they atomic, nuclear, molecular, or
condensed matter, the concept of collective coordinates [1] has been of central importance. Its
goal has been to generate models involving far fewer degrees of freedom than the true number,
3A, as required for a proper, microscopic, description of a system of A particles. As is also
often the case, the dynamics can be compressed into slow motions of a few collective degrees of
freedom (B), while the other, faster, degrees of freedom are averaged out. Also, in the case of
identical particles, such collective degrees of freedom may be represented as one-body operators:
B =

∑A
i=1 β(ri,pi, σi, τi), where β(ri,pi, σi, and τi refer to the individual particle i’s position,

momentum, spin, and, if necessary, isospin, respectively.
Once prescribed, such models lead to energy surfaces [2] of the system. Given the collective

operator B with expectation value b ≡ ⟨B⟩, most collective models accept that there exists
an energy function, e(b), and an inertia parameter, µ(b), that drive the collective dynamics.
Descriptions of such energy surfaces leads to terminology such as “saddles”, “barriers”, etc.
[2, 3, 4].

Central to the prescription is the assumption that the energy function is a result of an energy
minimisation under constraint. That is, while the system evolves through various values of b, it is
accepted that the energy is tuned to achieve a (local) minimum. This aspect of finding the energy
surface is central to many fields of physics. Consider a Hamiltonian, H =

∑
i Ti +

∑
i<j Vij ,

where T and V denote the kinetic and potential energy operators. Given a trial set of density
operators, D, in many-body space and normalised by TrD = 1, with Tr denoting the trace, the
energy surface may be defined by

e(b) = inf
D⇒b

Tr {HD} . (1)

The constraint, D ⇒ b, enforces Tr {BD} = b.



However, there are theories which do not use, a priori, energy minimisation for the “fast”
degrees. Time-dependent Hartree-Fock (HF) trajectories [5], generalisations with pairing,
adiabatic versions [6], often exhibit collective motions. Equations of motion [7] and/or a
maximum decoupling [8] of “longitudinal” from “transverse” degrees of freedom, have also shown
significant successes in the search for collective degrees. This has come at the cost, however, of
imposing a one-body nature of both collective coordinates and momenta and accepting state-
dependence of those operators. Such approaches define an energy surface once trajectories of
wave functions in many-body spaces have been calculated. (They are not the subject of the
present paper.) Herein, we focus on fixed operators constraining energy minimisation within a
fixed basis for single-particle and many-body states.

To define properly am energy function e(b) of the collective coordinate, one should first
diagonalise B within the space defined by the many-body states. The resulting spectrum of B is
assumed to be continuous, or at least have a high level density for the chose trial space. For each
eigenvalue, b, one should then find the ground state energy eigenvalue e(b), of the projection of
H onto that eigensubspace labelled by b.

However, in practice, one settles for the diagonalisation of the constrained operator H =
H − λB, where λ is a Lagrange multiplier, or, alternatively, for the minimisation of ⟨H⟩.
(This is not restricted to one constraint: one may add more constraints with suitable Lagrange
multipliers defined.) B is assumed to have both lower and upper bounds, or, that the constrained
Hamiltonian will always have a ground state. From that constrained Hamiltonian, one may
obtain the free energy, ε(λ) ≡ ⟨H⟩. The label b is no longer an eigenvalue but just an average
value, as defined by the expectation value of B. A Legendre transform of ⟨H⟩ then returns the
energy surface e(b), with b and λ forming a Legendre pair. Thus dε/dλ = −Tr {BD} = −b
and de/db = λ. The problem lies when considering a constrained variation in a quantum system
without additional precautions as: i) there is a link between strict minimisation and the curvature
properties of e(b); and ii) the usual interpretation of b as a well-defined coordinate for a collective
model can be negated by non-negligible fluctuations (whatever the cause).

2. Theorem linking minimisation and concavity
Before proving the theorem, we must recall that, with Hartree-Fock (HF) and Hartree-
Bogoliubov (HB) approximations, both concave and convex branches were obtained for e(b)
by replacing the constraint term, −λ ⟨B⟩, in ⟨H⟩ by either −λ′ ⟨B⟩ + µ ⟨B⟩2 /2, [9], or
−C (⟨B⟩ − µ)2 /2, [3, 4], with adjustable values of λ′, C, and µ. However, both methods, while
stabilizing the numerical procedure, amount to use an effective Lagrange multiplier, namely
λeff = λ − ⟨B⟩µ and λeff = C (⟨B⟩ − µ), respectively. We shall, therefore, stick to the generic
form, H − λB, in the following.

Consider a solution branch D(λ), expanding up to second order, and assuming that the
manifold of solutions is suitably analytic,

D(λ+ dλ) = D(λ) + dλ(dD/dλ) + (dλ2/2)(d2D/dλ2). (2)

The stationarity and minimality of Tr {HD} with respect to any variation of D, and in particular
w.r.t. that variation, D(λ+ dλ)−D(λ), induce,

Tr {HdD/dλ} = 0,

Tr
{
Hd2D/dλ2

}
≥ 0. (3)

The free energy ε is also stationary for D(λ + dλ), but the Hamiltonian is now, H(λ) − Bdλ,
and the derivative of the state is, dD/dλ+ dλ(d2D/dλ2) +O(dλ2), hence,

Tr
{
(H−Bdλ)

[
dD/dλ+ dλ(d2D/dλ2) +O(dλ2)

]}
= 0. (4)



The zeroth order of this, Eq. (4), is, Tr {HdD/dλ}. It vanishes, because of the first of Eqs. (3).
The first order, once divided by dλ, gives,

−Tr {BdD/dλ} = −Tr
{
Hd2D/dλ2

}
. (5)

The left-hand side of Eq. (5) is nothing but the the second derivative, d2ε/dλ2. The right-hand
side is semi-negative-definite, because of the second of Eqs. (3). Hence, the plot of ε(λ) is a
convex curve and the plot of its Legendre transform, e(b), is concave. (Other authors may have
the opposite sign convention of the second derivative to define concavity versus convexity.) With
our sign convention [10, 11], strict minimisation necessarily induces concavity, and any convex
branch means that the “fast” degrees of freedom are not in a minimal energy.

It is important to note that this proof does not assume any specification of D(λ), whether it
is constructed either from exact or approximate eigenstates of H. Therefore strict minimisation
can only return concave functions e(b). Maxima are impossible. In the generalisation where
several collective operators B1, . . . , BN , are involved, concavity stills holds, so saddles are also
excluded. Hence, only an absolute minimum is possible. (However, we shall show below how to
overcome the paradox: by keeping constant the fluctuations of the collective coordinate(s), one
can deviate from concavity, and more important, validate a constant quality of the representation
provided by branches D(λ).)

Alternatively, let ψ(λ) be the ground state of H. (For the sake of simplicity, we assume
that there is no degeneracy.) The corresponding eigenvalue, ε(λ), is stationary with respect to
variations of ψ, among which is the “online” variation, dλ (dψ/dλ), leading to the well-known
first derivative, dε/dλ = −b ≡ −⟨ψ |B|ψ⟩. Consider the projectors P = |ψ⟩ ⟨ψ| and Q = 1− P.
Brillouin-Wigner theory yields the first derivative of ψ, viz.

d |ψ⟩
dλ

= − Q

ε−QHQ
B |ψ⟩ . (6)

This provides the second derivative of ε,

− db

dλ
≡ − d

dλ
⟨ψ |B|ψ⟩ = 2

⟨
ψ

∣∣∣∣B Q

ε−QHQ
B

∣∣∣∣ψ⟩ . (7)

Since the operator (ε−QHQ) is clearly negative-definite, the eigenvalue, ε, is a convex function
of λ. It is trivial to prove that the same convexity holds for the ground state eigenvalue
ε(λ1, . . . , λN ) if several constraints, B1, . . . , BN , are used. If, moreover, a temperature T is
introduced, the thermal state, D = exp [−H/T ] /Tr exp [−H/T ] , replaces the ground state
projector, |ψ(λ1, . . . , λN )⟩ ⟨ψ(λ1, . . . , λN )| , and the free energy, ε(λ1, . . . , λN ;T ), also contains
the entropy contribution, −TS, where S = −Tr {D lnD}. A proof of the convexity of the exact
ε(λ1, . . . , λN ;T ) is also easy [12].

At T = 0, the usual Legendre transform expresses the energy, e ≡ ⟨ψ |H|ψ⟩, in terms of the
constraint value(s) rather than the Lagrange multiplier(s). For simplicity, consider one constraint
only; the generalization to N > 1 is easy. Since e ≡ ε + λb, then de/db = λ, a familiar result
for conjugate variables. Furthermore, the second derivative, d2e/db2, reads, dλ/db = 1/(db/dλ).
From Eq. (7), the derivative, db/dλ, is positive-definite. Accordingly, e is a concave function of
b. Now, if T > 0, the Legendre transform instead generates a reduced free energy, η ≡ (e−TS),
a concave function of the constraint value(s). An additional Legendre transform returns e alone,
as a concave function of the constraint(s) and S.

Let b− and b+ be the lowest and highest eigenvalues of B. When λ runs from −∞ to +∞,
then b spans the interval, [b−, b+]. There is no room for a junction with convex branches
under technical modifications as used by [9, 3, 4]. For every exact diagonalization of H, or
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Figure 1. The convex contour plot of
ε(λ, µ), for the model of Eq. (9).
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Figure 2. Ground state (solid line) when
λ = µ = 0, and potential (dashed line).

exact partition function, concavity sets a one-to-one mapping between b in this interval and
λ. More generally, with exact calculations, there is a one-to-one mapping between the set of
Lagrange multipliers, {λ1, . . . , λN} , and that of obtained values, {b1, . . . , bN}, of the constraints.
Concavity, in the whole obtained domain of constraint values, imposes a poor landscape: there
is one valley only.

3. Results
With Q now denoting our generic constraint, we diagonlise H = H − λQ accordingly, where
the Lagrange multipler λ ∈ (−∞,∞). This is equivalent to finding the roots of the equation
P(λ, ε) ≡ det(H − λQ− ε) = 0. We track of ⟨H⟩ and ⟨Q⟩, along the eigenstates of H, viz.

Q(λ, ε) ≡ ∂P
∂λ

− ⟨Q⟩ ∂P
∂ε

= 0. (8)

We replace ε in terms of ⟨H⟩, λ, and ⟨Q⟩, in P and Q. By eliminating λ we obtain a resultant
R(⟨H⟩ , ⟨Q⟩) = 0. We plot ⟨H⟩ as a multi-valued function of ⟨Q⟩. (See Ref. [13] for details.)

Consider a model consisting of 11 (or 21) oscillators, where the Hamiltonian is

H =
P 2

2
+ V (r)

H = H − λr + µr2, (9)

which is a model with two constraints. Fig. 1, shows the (convex) contour plot of the lowest
eigenvalue ε(λ, µ) of H. Fig. 2 shows the ground state and potential energy of the model. If one
allows for a fluctuation in r, denoted by ∆r, as given in Fig. 3, one recovers the ground state
energy landscape, Fig. 4, by subtracting the zero point energy. Figs. 5 and 6 show 3d plots of
the energy as functions of constraints and of fluctuations, respectively. Concavity in the surface
is clearly observed in Fig. 5, as is the shape of the potential in Fig. 6. Note that with increasing
fluctuation the constraint is clearly lost.

4. Conclusions
There are problems in defining energy surfaces as a result of minimisations when constraints are
subject to fluctuations. Controlling the effect of such fluctuations by second-order constraints
is necessary to keep the quality of the energy across the landscape.
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Figure 3. Contour plot of the fluctuation,
∆r.
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Figure 4. Contour of the ground state
energy after subtraction of the zero point
energy.
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