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Abstract. Basic techniques that make it possible to trace the gamma-ray interactions inside a 

segmented Ge detector and reconstruct the gamma-ray trajectory are discussed. The process of 

developing gamma-ray tracking in general and the plans for establishing the position 

sensitivity of the iThemba LABS segmented clover detector are outlined.  

1.  The idea about developing gamma-ray tracking  

Some fifteen years ago the most powerful gamma-ray arrays, GAMMASPHERE and EUROBALL, 

were delivering plenty of gamma-spectroscopic data with the aid of which many new phenomena in 

nuclear structure were discovered. These powerful arrays consisting of gamma-ray detectors were 

covering a solid angle of 4, with a total photopeak efficiency of about 9% for a gamma-ray with 

energy of 1.3MeV. Nevertheless the question whether we can  improve even further the resolving 

power of the gamma-ray arrays was discussed. 

The GAMMASPHERE and EUROBALL arrays consisted  of a large number of HpGe detectors, 

each surrounded by a Compton-suppression shield made of scintillator detectors. The Ge crystals 

which are the active material for gamma-ray detection covered about 50% of the 4 solid angle. The 

Compton-suppression shield is used to veto the gamma-rays that Compton scatter outside the Ge 

crystal after depositing part of their energy, and thus they contribute to an unwanted Compton 

background. The BGO shield then improves substantially the Compton background and therefore the 

resolving power of the array. But one can consider whether the performance of the array may not be 

enhanced by replacing the scintillators with Ge crystals, making in that way a full 4 ball made 

entirely of Ge crystals. In this case when a gamma-ray scatters from one Ge crystal to a neighbouring 

one, instead of rejecting the event, we can measure all deposited energies and sum them to recover the 

total energy of the incident gamma-ray. 

In order to implement this idea there is one problem that needed to be solved. Assume that two Ge 

crystals were hit, and the deposited gamma-ray energies were E1 and E2. One needs to determine 

whether these two hits were caused by one gamma-ray with a total energy of E = E1+E2, that scattered 

between the two crystals, or whether they were two independent gamma-rays with energies of E1 and 

E2 respectively. It is obvious that in the latter case the two energies should not be summed.  



 

 

 

 

 

 

 
Figure 1. Diagram showing Compton scattering of a gamma-ray 

 

In fact one can easily distinguish a Compton scattering event by testing whether the deposited 

energies E1 and E2, and the scattering angle C (see figure 1) obey the Compton scattering formula: 

 cos C  = 1 + 0.511(1/E - 1/E’) 

where the deposited energies are E1 = E – E’ and E2 = E’ 

In order to test that equation we need to measure not only the energies, but also the scattering angle 

C. Therefore the detectors need to have an extra capability, that is to be able to measure the position 

at which the gamma-ray interaction occurred. 

The latest developments in  gamma-ray detector technology made it possible to construct such 

detectors. These detectors are made of segmented Ge crystals and are a new generation of gamma-

spectroscopy detectors. They have one central electrode where a high voltage with positive polarity is 

applied, while the outside electrode is segmented. For example the segmented Ge crystal used in the 

AGATA and GRETA arrays (shown in the figure 2), is segmented in 6 x 6 = 36 segments. In 

comparison another segmented Ge detector, a TIGRESS detector, is also shown in figure 2 and has a  

4 x 2 = 8 segmentation per Ge crystal. 

 
Figure 2. Left: the AGATA/GREATA Ge crystals, segmented in 6 x 6 fold. Right: TIGRESS 

detector with a segmentation of 4 x 2 = 8 fold per crystal.  

 

When a gamma-ray interacts inside the detector, it creates charges. These charges move towards 

the electrodes creating electric currents. The signals observed on the electrodes represent such currents 

and have shapes that are indicative of the mobility of the electron and hole charge carriers, and also of 

where (i.e. how far from the electrode) the charge was created. A few examples for shapes of the 

signals created at different positions are illustrated below. 

The signals shown in figure 3 are measured for a TIGRESS detector. Three interaction points are 

illustrated as  black, red and blue dots. The corresponding signals on the three outside electrodes, C1, 

C2 and C4 are also shown in the figure. The interaction points plotted in red and black are situated at 

the same radius with respect to the core electrode, so they are at approximately the same distance from 

the electrode C1. That is why the black and the red signals on the electrode C1 have approximately the 



 

 

 

 

 

 

same shapes. The signal for the blue interaction point however shows a distinctly different shape, 

because this point lies at a different radius. 

The amplitudes of the induced signals on the neighbouring electrodes C2 and C4, can be used to 

determine how close each interaction point is to these electrodes. For instance the signals measured at 

electrode C2 indicate that the blue and the red interaction points are lying at approximately similar 

distance from the electrode C2, while the black interaction point is closer, because this signal has a 

larger amplitude. In a similar way we can deduce that the red interaction point is closer to electrode C4 

then the black and the blue interaction points because the signal from the red interaction position has a 

larger amplitude. 

 

 
 

Figure 3. Signals measure for a TIGRESS detector for three different interaction positions shown 

with black, red and blue. From [1]. 

 

In fact the set of signals measured at all electrodes is unique for each interaction point. It is also 

different for different type of detectors and even for different detectors with the same geometry. That 

is because the shape of the signals depends not only on the geometry of the detector, but also on the 

high voltage value, on the impurity concentrations, and on the specific characteristics of the particular 

crystal preamplifier.  

To utilize the position sensitivity of a segmented Ge detector we have to create a data base 

containing sets of pulses that characterize every possible interaction position in the volume of the 

detector. Then an experimentally measured set of pulses associated with certain gamma-ray interaction 

points, have to be compared with the data base. The best match will then determine the exact position 

of the gamma-ray interaction.  

Once the interaction positions associated with a gamma ray are deduced, the gamma-ray trajectory 

needs to be recovered by determining the correct order of the set of gamma-ray interaction points. This 

is usually done by applying a tracking algorithm that checks which ordering of the interaction points 

satisfies the Compton scattering formula.  

New gamma ray arrays, able to implement this gamma-ray tracking technique were designed, such 

as AGATA and GRETA. They have typical efficiency of about 43% for  1.3 MeV gamma rays, and 

resolving power of 2-3 orders of magnitude larger than the GAMMASPHERE and EUROBALL 



 

 

 

 

 

 

arrays [2]. Smaller versions of these arrays, called AGATA demonstrator and GRETINA are already 

in operation. 

2.  Advantages of gamma-ray tracking 

Gamma-ray tracking was suggested and developed as a necessary technique to build a 4 array of Ge 

detectors. However the gamma-ray tracking has other additional advantages. Successful gamma-ray 

tracking leads to: 

(i) efficient add-back, i.e. recovering the total energy of a Compton scattered gamma ray,  

(ii) efficient rejection of the Compton background, better than what can be achieved with a typical 

Compton suppression shield 

(iii) precise measurement of the position for the first interaction point of the gamma ray inside the 

detector. This offers unprecedented accuracy and precision for several experimental techniques, such 

as: lifetime measurements using Doppler effects, correction of Doppler shifts for gamma rays emitted 

by nuclei in flight (that improves substantially the energy resolution and the resolving power of the 

detector), angular distribution measurements which can yield precisely measured mixing ratios and g-

factors, etc. 

(iv) precise measurement of the position for the second interaction point of the gamma ray inside the 

detector. This offers unprecedented precision for linear polarization measurements, and allows 

establishing the electric or magnetic nature of the gamma ray. 

3.  Developing gamma-ray tracking with the iThemba LABS segmented clover detector 

The iThemba LABS segmented clover detector is a detector with TIGRESS geometry – it consists of 4 

Ge crystals, each 8-fold  segmented, as shown in figure 2. Each crystal has a diameter of 60mm before 

shaping and a length of 90 mm. It is designed to be placed at 14.5 cm or 11 cm from the target and is 

complemented by a Compton-suppression shield. Simulations yield efficiency of 0.63% and 1% for a 

1.3 MeV gamma ray at these two distances [3]. 

The major interest in the iThemba LABS segmented clover detector lies with its position 

sensitivity. The wish is to use this detector for applications requiring extreme precision in the 

measured position of the first and second interaction points. To develop the gamma-ray tracking 

capacity of this detector the following major steps are planned: 

(i) Simulations of the geometry, electric field, movements of the charge carriers and finally the shape 

of the pulses on the 36 contacts of the clover detector. Creating a data base with characteristic pulses 

for each interaction position. 

(ii) Experimental verification of the simulations by measuring the pulses observed at several different 

well-defined interaction positions inside the iThemba LABS segmented clover detector. 

(iii) Developing a procedure to compare the experimentally measured pulses with the pulses in the 

data base and extracting the best match to determine the position of the gamma-ray interaction. 

(iv) Based on the established interaction positions the full gamma-ray track inside the detector will be 

reconstructed, yielding in particular the first and the second interaction points. 

The development of gamma-ray tracking with the iThemba LABS segmented detector is under 

way. Results obtained so far from the simulations of the detector are discussed in the presentations 

given by S. Noncolela and T.D. Bucher. The experimental measurements of the performance of the 

segmented detector are discussed in the presentations of J.L. Eason and O. Shirinda. It is anticipated 

that once the gamma-ray tracking capacity of this detector is developed, it will be used as a new-

generation gamma-ray detector for performing new types of  nuclear structure experiments utilizing its 

position sensitivity. 
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