where $q=\log 1 / c$ is the quality factor and

$$
x=\frac{(1-5 \delta)(1-\delta) \eta(1-\eta)}{(\delta+(1-2 \delta) \eta)(1-\delta)-(1-5 \delta) \eta)},
$$

where $\eta=(2 \alpha \beta)^{2}$ and $\delta=2 / 3 p,(0<p<1)$, where p describes the amount of noise in the channel. The error rate conditioned on acceptance is given by $\varepsilon=\delta /(1-2 \delta) \eta+2 \delta, \alpha \in\left(0, \frac{1}{\sqrt{2}}\right)$ and $\beta=\sqrt{1-\alpha^{2}}$ are complex vectors [18]. By substitution of Equation (22) into Equation (21), we find that the secret key rate r, varies with the number of signals N, as shown in Figure 1 . Again, if we combine Equation (22) with the proposed bound on the achievable key length in Equation (21) and also by using the Quantum Leftover Hash Lemma [19] we have

$$
\begin{equation*}
\triangle \leq \bar{\varepsilon}+\frac{1}{2} \sqrt{2^{\ell-H_{\min }^{\bar{\varepsilon}}}\left(X \mid E^{\prime}\right)} \leq 2 \bar{\varepsilon}+\varepsilon_{P A}, \tag{23}
\end{equation*}
$$

where E^{\prime} summarizes all information Eve learned about \mathbf{X} during the protocol including the classical communication sent by Alice and Bob over the authenticated channel. This equation shows that one can extract a \triangle-secret key of length ℓ from X. This completes the proof for security bound for the B92 protocol.

4. Conclusion

We have demonstrated how one can use results of the uncertainty relations and smooth Rényi entropies to derive security bounds for the B92 QKD protocol when a finite number of signals are used. The results show that a minimum number of approximately $10^{4}-10^{6}$ signals are required in order to extract a reasonable length of secret key in QKD protocols under realistic scenarios. This minimum number has also been discussed in [6, 8, , 9]. Therefore, the uncertainty relations and the smooth Rényi entropies prove to be a powerful technique for the derivation of the security bounds in QKD protocols in the finite size-key regime.

Acknowledgments

This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

References

[1] Bennett C and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol 175 (Bangalore, India)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145-195
[3] Ekert A 1991 Physical Review Letters 67 661-663
[4] Bennett C 1992 Physical Review Letters 68 3121-3124
[5] Scarani V, Acín A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92057901
[6] Scarani V and Renner R 2008 Physical Review Letters 100200501
[7] Renner R 2008 International Journal of Quantum Information 6 1-127
[8] Cai R and Scarani V 2009 New Journal of Physics 11045024
[9] Sheridan L, Le T and Scarani V 2010 New Journal of Physics 12123019
[10] Sheridan L and Scarani V 2010 Phys. Rev. A 82(3) 030301
[11] Tan Y and Cai Q 2010 The European Physical Journal D 56 449-455
[12] Abruzzo S, Kampermann H, Mertz M and Bruß D 2011 Physical Review A 84032321
[13] Tomamichel M and Renner R 2011 Physical Review Letters 106110506
[14] Rényi A 1961 Fourth Berkeley Symposium on Mathematical Statistics and Probability pp 547-561
[15] Kraus B, Gisin N and Renner R 2005 Physical Review Letters 9580501
[16] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nature communications 3634
[17] Phuc Thinh L, Sheridan L and Scarani V 2011
[18] Christandl M, Renner R and Ekert A 2004 arXiv:0402131v2
[19] Tomamichel M, Schaffner C, Smith A and Renner R 2011 IEEE Transactions on Information Theory $\mathbf{5 7}$ 5524-5535 ISSN 0018-9448

