

Contribution ID: 40

Type: not specified

Green Synthesis and Characterization of Silver-Doped ZnO Nanoparticles Using Tobacco Leaf Extract: A Novel Hydrothermal Approach for Antibacterial and Antifungal Applications

Friday, 21 November 2025 10:45 (15 minutes)

Abstract

A green synthesis of pure zinc oxide and silver-doped zinc oxide nanoparticles (ZnO and Ag-ZnO NPs) is reported. This eco-friendly method utilizes tobacco leaf aqueous extract as a reducing and stabilizing agent, combined with a hydrothermal process at 120°C for 6 hours to control nanoparticle formation. The study aimed to synthesize, characterize, and evaluate the antimicrobial activity of Ag-ZnO NPs. Characterization techniques included FTIR, XRD, SEM, UV-Vis, and PL spectroscopy, along with BET surface area analysis. FTIR confirmed functional groups, while X-ray diffraction (XRD) validated the hexagonal wurtzite ZnO structure. SEM imaging revealed a nanosheet morphology. UV-Vis analysis showed bandgap energy shifting with Ag doping: 2.02 eV (pristine ZnO) to 2.29 eV (3% Ag), 2.53 eV (5% Ag), and 3.53 eV (1% Ag). BET analysis indicated a decrease in surface area (132.251 m²/g for pristine ZnO to 85.005 m²/g for 1% Ag and 65.318 m²/g for 5% Ag) and pore volume with higher Ag content. PL spectroscopy examined electron-hole recombination. Antimicrobial activity against *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans* was evaluated via disk diffusion assay, using ciprofloxacin and fluconazole as controls. Two-way ANOVA revealed significant differences in the zone of inhibition (ZOI) across varying concentrations and Ag doping levels ($p < 0.005$). Enhanced antibacterial activity against *S. aureus* was observed with increasing Ag doping, while *E. coli* showed limited susceptibility. The NPs exhibited antifungal activity against *C. albicans*. Bandgap, surface area, and antibacterial activity are controllable characteristics suggesting applications in biomedicine, photovoltaics, and photocatalysis.

Primary author: MAHAMUD, Jebel (Adama Science and Technology University)

Co-authors: Prof. ABEBE , Belay Gemta (Adama Science and Technology University); Dr ALEMU, Kebede (Adama Science and Technology University); Dr GETACHEW , Abebe Argaw (Haramaya University); UMER , Sherefedin (Madda walabu University); Mr MUKTAR , Ahmed (Adama Science and Technology University); Dr TESFAYE , Feyisa Hurrisa (Adama Science and Technology University); Dr GURUMURTHI , T (Adama Science and Technology University)

Presenter: MAHAMUD, Jebel (Adama Science and Technology University)

Session Classification: Friday Morning II

Track Classification: AfPS