

Contribution ID: 44

Type: not specified

Photoionization of Low- and Highly-Charged Atomic Ions Using Synchrotron and Free-Electron Lasers

Friday, 21 November 2025 11:30 (30 minutes)

1- Introduction

New instruments have been employed for spectroscopic studies of gaseous astrophysical environments using synchrotron photoabsorption in the soft X-ray range (0.1–2 keV) at the Elettra Laboratory in Trieste, Italy. The first instrument used in this study is the Electron Beam Ion Trap (EBIT) [1]. The second is a newly developed setup called the OctoIonGuide (OIG), which was designed and characterized at the CNR laboratory in Trieste. The primary purpose of this apparatus is the investigation of low- and highly-charged atomic ions. Preliminary results obtained from the EBIT will be presented for different charge states of oxygen and nitrogen. In addition, the characterization of the OIG instrument will be discussed, including mass spectra of various noble gases and the quantification of ion counts. These measurements are expected to provide valuable insights for upcoming astrophysical observations, facilitating the physical diagnostics of weakly ionized gas distributed throughout the universe [1–3].

2- Results

The Electron Beam Ion Trap (EBIT) has been utilized for high-resolution measurements, as shown in Fig. 1. The photoionization of N^{3+} ions were measured using the EBIT, which served both to produce and confine the ions. The photoion yield of N^{3+} was recorded for the transition process: $1s^2 2s 2p \ ^3\text{P}^o \rightarrow 1s 2s 2p^2 \ [{}^4\text{P}] \ ^3\text{P}$. In contrast, Fig. 2 presents the first results of the photoionization of Xe^+ ions generated in the OIG. The extracted and mass-selected Xe^+ ion beam was merged with the synchrotron photon beam. The resulting photoions were separated from the primary beam, mass-analyzed, and detected using a channeltron optimized for positive-ion detection.

Fig.1 Photoionization of $\text{N}^+(3+)$: $1s2 \ 2s2p \ 3 \text{P}^o \rightarrow 1s2s2p2 \ [\ 4 \text{P}] \ 3\text{P}$ Fig2. Photoionization of Xe^+ from OIG setup.

From EBIT setup.

3- References

- [1] Moto Togawa, et al, 2024, PRL, DOI: 10.1103/PhysRevLett.133.163202
- [2] Nicastro, F., et al., 2018, Nature 558, 406, DOI: 10.1038/s41586-018-0204-1.
- [3] Jenkins, E.B et al Astrophys. J. 2009, 700, 1299, DOI:10.1088/0004-637X/700/2/1299.
- [4] G. Betancourt-Martinez et al. ar. Xiv: 1903.08213 [astro-ph.HE].

Primary author: MOHAMED, Awad Elamin Awad (University of Camerino)

Co-authors: Dr CORENO, Marcello (ISM-CNR, GasPhase Beamline@Elettra); Dr DE SIMONE, Monica (CNR-Institute of Materials Workshop (IOM)); Prof. R. CRESPO LÓPEZ-URRUTIA, Jose (Max-Planck-Institut für Kernphysik); Mr DANISCH, Jonas (Max-Planck-Institut für Kernphysik); Mr BOTZ, Marc (Max-Planck-Institut für Kernphysik); Dr TOGAWA, Moto (Max-Planck-Institut für Kernphysik); Mr GOES, Joschka (Max-Planck-Institut für Kernphysik); Dr CATONE, Daniele (CNR-Istituto di Struttura della Materia (ISM)); Mr ZUCCARO, Fabio (CNR-Istituto di Struttura della Materia (ISM)); Dr ORLANDO, Stefano (Istituto di Struttura della Materia (ISM) del Consiglio Nazionale delle Ricerche (CNR)); Dr REZVANI, Javad (1School of science and technology, University of Camerino); Prof. DI CICCO, Andrea (1School of science and technology, University of Camerino)

Presenter: MOHAMED, Awad Elamin Awad (University of Camerino)

Session Classification: Friday Morning II

Track Classification: AfLS