

Contribution ID: 8

Type: not specified

Partial Melting of Hydrous Carbonated Fertile Peridotite at 3 GPa: Influence of Water and CO₂ in the Formation of Picrites and Komatiites

Tuesday, 18 November 2025 09:45 (15 minutes)

Komatiites and picrites are ultramafic volcanic rocks characterized by high magnesium oxide content (15 – 32 wt.%) that mostly erupted throughout the Archean and Proterozoic eras globally. Their production is a contentious topic, with models proposing extensive volatile-free partial melting of mantle peridotite and the melting of hydrous mantle as potential mechanisms. Additionally, numerous investigations have identified CO₂ in the melt inclusions of these rocks. These volatiles substantially lower the melting point of peridotite in the upper mantle by several hundred degrees. Nonetheless, the limitations on the influence of H₂O–CO₂ fluids on the formation of picrites and komatiites are restricted. This work presents two sets of piston-cylinder experiments conducted at controlled and static temperatures on a fertile peridotite composition (MixKLB-1; XMg = 0.89) with 1 wt.% CO₂ and XH₂O values of 0.86 and 0.92. Given that these volatiles exhibit significant solubility in silicate melts at pressures above 2 GPa, all experiments were performed at 3 GPa and within a temperature range of 1200 to 1575°C to simulate upper mantle conditions from the Archean to Proterozoic eras. In the controlled heating experiments (1350–1575°C), the temperature was initially elevated to 75–200 °C above the target run temperature and maintained for 10 minutes to 3 hours to facilitate the development of big crystals (>35 µm). Subsequently, the temperature was reduced to the end run temperature at consistent ramp rates ranging from 19.8 to 51°C/h and maintained at the target temperature for a duration of 6 to 16 hours. The static experiments were conducted at constant temperatures ranging from 1200 to 1300°C for durations of 30 to 120 hours. A broad spectrum of melt proportions (<5 – 61 wt.%) was detected in equilibrium with olivine + orthopyroxene ± clinopyroxene throughout every experiment. As the degree of melting increases, the composition of the partial melt, excluding volatiles, transitions from picritic to komatiitic, characterized by 14.5–34 wt.% MgO, 38–51 wt.% SiO₂, and an Al/Ti ratio of 5.5–12.9. The analogous major element concentrations of hydrous carbonated partial melts (4.1 – 11.2 wt.% Al₂O₃, 7.2 – 14.8 wt.% FeO, and CaO/Al₂O₃ ratios of 1–3.5) with natural picrites and komatiites indicates the presence of both CO₂ and H₂O in the source of these ultramafic rocks.

Primary authors: Mr SARKAR, SAGNIK (Indian Institute of Technology Kharagpur); Dr GHOSH, Sujoy (Indian Institute of Technology Kharagpur); DASH, JITENDRA KUMAR (INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR); Dr RAY, Dwijesh (Physical Research Laboratory Ahmedabad)

Presenter: Mr SARKAR, SAGNIK (Indian Institute of Technology Kharagpur)

Session Classification: Tuesday Morning I

Track Classification: AfPS