New Beamlines for Siam Photon Source-II

Chanan Euaruksakul Beamline and End-station Development Section Synchrotron Light Research Institute

African Light Source Conference 14.11.2023

SPS-II Synchrotron

Siam Photon Source II

A new low-emittance storage ring of Thailand

- 3.0 GeV
- 327.6 m circumference
- 21 straight sections available for beamlines

SPS-II Beamlines

No. of Phase-I beamlines: 7

Beamline Full name						
HRSXS	High-Resolution Soft X-ray Spectroscopy					
TXAS	Tender X-ray Absorption Spectroscopy					
HXAS	Hard X-ray Absorption Spectroscopy					
ХМСТ	X-ray Microtomography					
HRXRD/MX	High Resolution X-ray Diffraction & Macromolecular Crystallography					
SWAXS	Small and Wide-Angle X-ray Scattering					
GIXRD/TRXRF	Grazing-Incidence X-ray Scattering and Total Reflection Fluorescence					

SPS-II Phase-I Beamline

Beamline	Full name (based on DDR 2019)	Energy range (keV)		Insertion device	Measurement
		Core	Best-effort		
HRSXS	High-Resolution Soft X-ray Spectroscopy	0.1-2.0	0.097-2.5	EPU64 (or 58) 1.344 m (revising)	NEXAFS, XMCD, PEEM, XPS, ARPES
TXAS	Tender X-ray Absorption Spectroscopy	1.8-10	1.0-13	IVW70 1.05m	XANES, EXAFS, Full-field X-ray Fluorescence
HXAS	Hard X-ray Absorption Spectroscopy	4-35	4-35	IVW50 2.0 m	XANES, EXAFS, quick XAFS (ms time scale)
ХМСТ	X-ray Microtomography	8-60	8-60	IVW50 2.0 m	CT of large biomaterials and large industrial samples
HRXRD/MX	High Resolution X-ray Diffraction & Macromolecular Crystallography	5-25	5-25	IVU20 3.0 m (revising length)	High resolution XRD and MX
SWAXS	Small and Wide-Angle X-ray Scattering	8-20	8-20	IVU20 3.0 m (revising length)	SAXS, WAXS
IR	Infrared spectroscopy & imaging	400-4000 cm 0	8.2023 – IR mov	red to Phase-II	IR microscopy
GIXRD/TRXRF	Grazing-Incidence X-ray Scattering and Total-Reflection Fluorescence	8-20	8-20	IVU20 3.0m	Diffraction of thin film, trace element, micro XRF

SPS-II Phase-I Beamline

Beamline	Full name (based on DDR 2019)	Energy range (keV)		Insertion device	Smallest spot size HxV (µm)
		Core	Best-effort		
HRSXS	High-Resolution Soft X-ray Spectroscopy	0.1-2.0	0.097-2.5	EPU64 (or 58) 1.344 m (revising)	40 x 4
TXAS	Tender X-ray Absorption Spectroscopy	1.8-10	1.0-13	IVW70 1.05m	110 x 57
HXAS	Hard X-ray Absorption Spectroscopy	4-35	4-35	IVW50 2.0 m	124 x 118
XMCT	X-ray Microtomography	8-60	8-60	IVW50 2.0 m	Designed for large beam
HRXRD/MX	High Resolution X-ray Diffraction & Macromolecular Crystallography	5-25	5-25	IVU20 3.0 m (revising length)	2.1 x 0.6
SWAXS	Small and Wide-Angle X-ray Scattering	8-20	8-20	IVU20 3.0 m (revising length)	109 x 62
IR	Infrared spectroscopy & imaging	4 00-4000 cm⁻¹	08.2023 – IR moved to Phase-I		Used with nanoprobe (nm resolution)
GIXRD/TRXRF	Grazing-Incidence X-ray Scattering and Total-Reflection X-ray Fluorescence	8-20	8-20	IVU20 3.0m	5 x 5 microns

Scientific program

Environmental research - catalyst

Methane partial oxidation by Pd catalyst

Binding Energy (eV)

336.5eV

337.2eV 334.9eV

e, R. Stal The Partial Oxidation of Methane Over Pd/Al2O3 Catalyst Nanoparticles Studied In-Situ by Near Ambient-Pressure X-ray Photoelectron Spectroscopy. Top Catal 59, 516–525 (2016).

Consumers products

- Polymers
- Hydrogels/aerogels
- Skin care and moisturizers

Siam Photon Source II

https://www.slri.or.th/en/list-research/580-slri-tested-%E2%80%9Cmama-kara%E2%80%9D-product-for-performance-in-building-up-skin-barrier.html

Thin films

- Magnetic thin films
- 2-dimensional materials
- Strongly-correlated materials
- Perovskites
- Electronics

Diamond-like carbon (hard coating)

Colorful diamond-like carbon films from different micro/nanostructures, X Zhou, et al., Advanced Optical Materials 8 (11), 1902064

Siam Photon Source II

Graphene + h-BN growth on Ni(111)

Wei, W. et al. Dynamic observation of in-plane h-**BN/graphene** heterostructures growth on Ni(111). Nano Res 13, 1789-1794 (2020).

Cultural heritage

Prevention of oxidation on copper by BTAH

https://rotaxmetals.net/how-to-oxidize-copper/

Temperature-programmed XPS

Gattinoni, C.; Tsaousis, P.; Euaruksakul, C.; Price, R.; Duncan, D. A.; Pascal, T.; Prendergast, D.; Held, G.; Michaelides, A. Adsorption Behavior of Organic Molecules: A Study of Benzotriazole on Cu(111) with Spectroscopic and Theoretical Methods. Langmuir 2019, 35 (4), 882–893. https://doi.org/10.1021/acs.langmuir.8b03528.

Cultural heritage

Restoration of antique mirror mosaics at the Temple of the Emerald Buddha in Bangkok

iam Photon Source II

Figure 5.18: Photographs of (left) antique mirror mosaics in the Temple of the Emerald Buddha on the base of the Kings' statues at the Royal Pantheon and (right), replica made by the research team at SLRI [46].

XAS at BL8 of SPS-I

Figure 5.19: (Left) Co *K*-edge XANES spectra of the antique glass B1, reference glass R6, and cobalt standards (Co metal, CoO, and Co₃O₄). (Right) Fe *K*-edge XANES spectra of the antique glass B1, reference glass R6, and iron standards (Fe metal, FeO, and Fe₂O₃) [46].

Klysubun, W., Hauzenberger, C.A., Ravel, B., et al., 2015. Understanding the blue color in antique mosaic mirrored glass from the Temple of the Emerald Buddha, Thailand. X-Ray Spectrometry, 44, 116-123.

Beamline specifications

HRSXS Beamline

100

75 -

50 -

25 -

0 -

-25 -

-50 -

-75 -

-100 -

-100

-50

HRSXS Photon Flux

TXAS Beamline

TXAS Photon Flux

SPS

HXAS Beamline

HXAS Photon Flux

575-

XMCT Beamline

XMCT Photon Flux

Siam Photon Source II

SWAXS Beamline

HRXRD/MX Beamline

Siam Photon Source II

GIXRD/TRXRF

Siam Photon Source II

*As of Nov 2023, the conceptual design of GIXRD/TRXRF is on going

New things to expect

- More complicate beamline systems
- Computer control of everything with different looking interface (EPICS/Python base)
- More work to do to handle bright (heat load) and very small beam (micron)
- Tighter radiation safety
- More challenging development for next beamlines
- More users (+international) with high expectations

Capabilities building

Work breakdown

		Sources	Magnetic measurement							
Sources			Magnet array design				Course nouver profile			
	Front ends		Finite element analysis (FEA)			simulation				
			High-heat load materials							
	lines	Optics	Focus sche	sing me	Metrology _{(ran}		Handling (range and precision)		Vibration	
			Energ	y filter		Har	Harmonic suppression			Mode switching
	Beam	Diagnostic /control	Auton	natior	n Feedback		ack	Thermal effect compensation		
	Mono		Liquid nitrogen		n	Water				
Į.	End-stations		Sample environment		it	SAN HP		HPC	Floor and space management	
			Detector			Data network		vork		
₽ ₽	Integration		Survey plan		iducialization Va		Vac	cuum Air con		Rack/cable
					SR ray tracing		E	PS	Gas	management
		Radiation Safety Hutch Pss		Bre	Bremsstrahlung shielding		Compressed air		Electricity	

Utilities

Team building – On the job training

Summary

- Thailand is aiming to have a new synchrotron facility in <10 years
- The techniques provided by the new beamline will be focused on the researches that have the economic, industrial and social impacts to Thailand and Southeast Asia.
- SLRI will have put a lot of effort to build up technological and engineering skills of its staffs for the project to be successful.

Thank you for your time

