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The SASEC 2023 organising committee would like to extend a warm welcome to the

Southern African Sustainable Energy Conference (SASEC) 2023.  It is a pleasure to be

a part of this prestigious event and engage with the sustainable energy community. 

The commitment of South Africa to the Just Energy Transition and to a more sustainable

future is indeed commendable and is essential for the global transition to renewable

energy and energy efficiency.

The diverse range of topics covered in this conference, including solar energy, biomass,

wind energy, hydrogen and energy storage, reflects the growing importance of

sustainable technologies.  It is clear that this event will provide valuable insights into

the latest developments and research in the field of renewable and sustainable energy.

We look forward to learning from the high-quality academic papers and the expertise

of the keynote speakers, Dr Claudia Buerhop-Lutz and Mahandra Rooplall.  Their

contributions will undoubtedly add great value to the conference. We also look forward

to hearing from our dinner guest speaker, Dr Morné du Plessis from World Wide Fund

South Africa (WWFSA).

We also extend our gratitude to the Department of Science and Innovation (DSI), the

South African National Energy Development Institute (SANEDI) and all the sponsors for

their support to make this conference possible.

We are excited about the opportunity to network with fellow sustainable energy

enthusiasts and contribute to the shared goal of building a more sustainable and green

future.  Thank you once again for your interest and attendance, and we look forward to

the fruitful discussions and engagement at SASEC 2023.

Prof Ernest van Dyk
Conference Chair
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THE RECENT ACCELERATED PACE OF ROOFTOP SOLAR 
INSTALLATIONS IN SOUTH AFRICA 

Hartmut Winkler1 
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Abstract: Worsening power shortages in South Africa have 
precipitated a faster move to alternative electricity supply 
technologies, especially solar rooftop generation. This study 
seeks to quantify and explore the timeframe of this growth in 
solar rooftop installations over the past few years through the 
inspection of the most recent as well as historical Google Earth 
imagery. The investigation also attempts to project the rate of 
embedded solar installations over the next few years, a poorly 
understood (yet key) factor in South African electricity demand 
models. Trends in commercial solar installations are analysed by 
examining bird's eye images of South Africa's larger shopping 
malls, also exploring whether there are regional differences 
attributable to site solar irradiance or other factors. Domestic 
solar installation growth in recent years is estimated by counting 
households with visible rooftop panels and determining the rate 
of increase in solar rooftop installations in the demographically 
well-studied Johannesburg suburb of Parkhurst. Aspects 
investigated include determining the extent to which rooftop 
installations have been optimally aligned to receive maximum 
solar irradiance. The study finds that shopping malls constitute 
~60% of the embedded solar facilities with total capacity in the 
range 0.5-5 MW, and that the dramatic increase in solar 
installations in malls coincided with the stalling of the REIPPPP 
programme in 2015. The upturn in domestic household solar 
installations is much more recent, with the number of households 
with solar power having more than doubled in the last 10 months. 

Keywords: commercial solar installation; domestic solar 
installation; solar rooftop; South Africa. 

1. Introduction 

South Africa enjoys some of the best conditions in the world for 
solar energy generation [1].  

From around 2010, many countries around the world have 
experienced major booms in solar rooftop installations, even 
when climatic conditions did not favour this mode of electricity 

generation. This has been driven by the need to avoid electricity 
generation from greenhouse gas emitting fossil fuel sources, as 
well as a rapid drop in the cost of solar power generating 
equipment [2]. 

Compared to other countries, the move towards renewable 
energy has been unnaturally slow in South Africa. Reasons for 
this are complex and include government messaging that can 
sometimes be interpreted as anti-renewables. Its clearest 
manifestation is the stalling of the Renewable Energy 
Independent Power Producer Procurement Programme 
(REIPPPP), the flagship government initiative set up to drive the 
development of solar farms and other renewable energy projects 
[3]. As a result, only very few new large solar farm builds were 
started between 2015 to 2018. 

The biggest inhibitor of a solar panel rollout has however been 
the until recently reliable and comparatively cheap supply of 
electricity by the state power utility Eskom. Eskom’s vigorous 
expansion of the electricity grid into previously underserviced 
rural areas in the early 2000’s also removed a key incentive for 
alternative sources of power supply in remote areas, a recognised 
niche for solar energy devices [4]. 

In the last few years the situation has however changed 
dramatically. Power cuts have progressively worsened to the 
point where they have become the daily norm [5], and electricity 
tariffs have been rising annually at well above the national 
inflation rate [6]. 

The last year in particular, when power shortages reached record 
levels and talk of a possible grid collapse entered public 
discourse, has seen a dramatic surge in the installation of rooftop 
solar panels. The boom is expected to be further boosted by the 
introduction of tax incentives to households that install solar 
power equipment domestically [7]. 

This study seeks to quantify the recent growth in solar rooftop 
installations in South Africa and better understand its drivers. 

7



2. Analytical method

Given the dearth and unreliability of official statistics on rooftop 
installation, the research method followed here consists of two 
approaches. Firstly, I have compiled a list of large entities that 
have set up solar installations in the capacity range 0.5-5 MW on 
their operational properties (usually on the roof) [8]. These 
entities include factories, corporate headquarters, warehouses, 
farms, but above all shopping malls. Secondly, I have carried out 
an ‘in-the-field’ census of solar rooftop installations in 
residential suburb of Johannesburg. More details follow below. 

In common to both approaches, I visually inspected bird’s eye 
imagery accessed through the Google Earth© application in 
which solar installations are generally well visible. Furthermore, 
Google Earth also allows access to earlier imagery, thereby in 
many instances enabling the determination of the approximate 
date on which a solar installation was made. 

2.1. Shopping mall survey 

I have over the past few years built up a list of large solar power 
installations in South Africa where I have included every facility 
that could be identified from internet searches provided it had a 
reported capacity of 0.5 MW or above [8]. 

This list is extensive, and at present includes 229 entries in the 
category of private on-site installations in the range 0.5-5 MW. 
This collection will hereafter be referred to as the “Base List”. 
Note that this Base List excludes larger solar farms with capacity 
of 5-100 MW such as the ones established under REIPPPP 
(details of which can also be found at [8]). 

Importantly, the Base List is not complete, nor is it a statistically 
homogeneous sample. It is expected that it currently only 
contains about half of the actual solar facilities with capacities in 
the range 0.5-5 MW. It is going to exclude all facilities for which 
no information concerning their existence and capacity was 
discovered during the internet searches. 

Another drawback of the information compiled in the Base List 
is that some facilities extended their capacities some time after 
the initial solar installations. An example is illustrated in Figure 
1, where the initial solar capacity was more than doubled a few 
years later. The capacity listed in the Base List may therefore not 
be current one. 

A further likely source of bias is that information on some of the 
latest solar installations have not been captured anywhere on the 
internet, either because the relevant websites have not been 
updated recently or because solar installations are no longer 
considered ‘newsworthy’.  

Despite this, the Base List constitutes a useful starting point for 
investigating the growth in solar installations in South Africa. 

Typical sources used in compiling the Base List include the 
recordals of completed solar projects found on the websites of 
many solar infrastructure developers. These are not expected to 
have any bias in favour of specific categories of clients (e.g. 
shopping malls versus factories). Note however that, while most 
such companies have a national footprint, they may operate with 
a regional focus. Despite the various reservations regarding 
potential bias, given the large number of entries listed in the Base 
List, the sample investigated may be considered as reasonably 
representative of South Africa’s private solar power installations 
in the capacity range 0.5-5 MW. 

Fig. 1. Examples of Google Earth images of a mall that 
underwent two phases of solar rooftop installations: Mams 
Mall, Mamelodi, Tshwane, 2018, 2021, 2023 (left to right). 

The shopping malls listed in the Base List were then inspected 
in Google Earth imagery. In particular, the earliest image was 
identified in which the solar installations were visible. The year 
in which this image was taken was then recorded as the 
installation year of solar rooftop panels of the shopping mall in 
question. It is however possible that if the last image not showing 
any solar panels was in an earlier year, the actual installation 
happened earlier than assumed. Given that most shopping malls 
are in urban areas where Google Earth imagery is updated every 
few months rather than every few years, such instances should 
be infrequent and would not dramatically affect the values given 
in Table 1.  

2.2. Domestic solar rooftop 

In order to attempt to quantify the growth in domestic solar 
rooftop in South Africa, this study uses Google Earth images 
recorded periodically over the last few years to count households 
with installed solar panels in the Johannesburg neighbourhood 
of Parkhurst. This suburb was chosen due to its relatively high 
density compared to typical income, and as its character, 
demographics and even the residents’ attitudes towards solar 
power have been well studied [9, 10, 11]. In particular, residents 
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in the suburb tend to have higher-than-average income and 
would also be more receptive to pro-environmental arguments 
and mitigating climate change. It is therefore the type of 
neighbourhood that would be expected to lead any national 
trends towards comprehensive solar rooftop installations. 

Thirty street blocks in the suburb were chosen to constitute the 
sample of residential houses for this study. In common with the 
rest of the suburb, houses here mostly have roofs pitched at 
angles similar to the local latitude angle, meaning that a panel 
placed on a north-facing roof would face the Sun directly at solar 
noon around the time of the solar equinoxes. Only the properties 
on the southern side of the road were included, as the north-
facing parts of the roof, where solar panels are most likely to be 
located, cannot be easily viewed when a house is north of a road. 
These southern sides of a street block usually consisted of 12 
houses, although in isolated instances there were only 8 or 9 
residential properties. Their location is illustrated in the Google 
Earth image displayed in Figure 2. The total count of residential 
houses in these 30 blocks amounted to 343. 

 

Fig. 2. Google Earth image of Parkhurst, Johannesburg, 
illustrating in blue highlight the street blocks used to 

generate the sample for this study.  

As with the shopping mall sample, the latest available Google 
Earth image covering Parkhurst (recorded in October 2022) was 
scanned for what looked like solar panels set up on the property. 
Thereafter imagery dating back to 2014 was inspected to 
determine the earliest image in which the solar panels are visible. 
The installation date was then assumed to be at the midpoint in 
time between the last image showing no sign of panels on the 
property and the earliest one where the solar installation is seen. 

In order to quantify solar installations since the last Google Earth 
image of Parkhurst currently available, I walked along the street 
of all 30 street blocks and recorded all solar rooftop installations 
not seen on the Google Earth images. This exercise also formed 
an additional check of the correctness of the Google Earth-based 

solar panel installations – in some instances what looked like a 
set of photovoltaic panels turned out to be a solar water heating 
device. Furthermore, the walkabout showed that about 10% of 
the solar installations unambiguously identified in the Google 
Earth images were not visible from the street, mainly due to high 
walls. 

3. Solar rooftop at commercial shopping malls 

3.1. Trends in the installations timeline covering the last 
decade 

The annual installations of solar rooftop capacity at shopping 
malls included in the Base List are recorded according to 
province in Table 1. The last three rows of Table 1 list the sum 
of the earlier rows from 2014 to 2023, the total installations (i.e. 
shopping malls plus other facilities with 0.5-5 MW capacity) on 
the Base List for each province, and the fraction of the Base List 
capacity made up by shopping malls in each province. 

Table 1. Annual and provincial breakdown of the solar 
rooftop capacity (in MW) installed in the studied sample of 
South African commercial shopping malls (Note: 2023 data 

only runs up to August of that year). 

(in MW) GP WC KZ L other 

2014 2.9 - - - 0.6 

2015 - 1.3 - - 1.0 

2016 19.3 - - - 1.2 

2017 9.7 3.8 - 1.6 4.6 

2018 6.8 2.4 2.2 3.4 5.4 

2019 4.5 2.3 4.2 - 6.4 

2020 9.0 2.4 3.2 3.7 6.4 

2021 6.2 0.6 2.1 1.9 1.5 

2022 8.1 - 13.0 2.9 0.7 

2023 1.2 - 3.2 - 1.4 

Mall total 67.7 12.8 27.9 13.5 29.2 

0.5-5MW 104.5 39.6 30.9 21.2 57.0 

%(mall) 65% 32% 90% 64% 51% 

Notes: GP – Gauteng; WC – Western Cape; KZ – KwaZulu 
Natal; L – Limpopo; 0.5-5MW – total provincial capacity of on-
site, medium size (0.5-5 MW) installations included in the 
sample; %(mall) – the percentage thereof installed at shopping 
malls 

While the entities in the other provinces given in the last column 
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are too small in number to extrapolate trends, it can be mentioned 
that these amounted to 11.2 MW, 7.4 MW, 4.2 MW, 4.0 MW 
and 2.4 MW in total in Mpumalanga, North-West, Northern 
Cape, Free State and Eastern Cape respectively. 

The annual national total of solar capacity at shopping malls 
from the Base List is illustrated in Figure 3. One notes a big rise 
in installations in 2016, after which the annual installation rate 
initially remained relatively constant, but then fluctuated 
substantially during the years of the national lockdowns at the 
time of the Covid-19 pandemic. Installation rates for 2023 only 
cover part of the year and furthermore many of the projects 
completed in early 2023 might not yet appear on the web pages 
from which the Base List has been compiled. The value for 2023 
should therefore not be considered in the further analysis. 

It needs to be noted however that the initial rapid acceleration in 
the rollout of solar power generation facilities associated with 
shopping malls has not persisted. It appears rather that the 
average of ~20 MW added each year over 2016-2018 will be 
more or less maintained when considering 2020-2023 as a 
whole. 

Fig. 3. Annual total installation of solar rooftop at the malls 
in the studied sample. 

3.2. Trends observed in the rollout of medium-size solar 
installations 

This study finds that nationally approximately 60% of all 
medium scale (0.5-5 MW) private on-site solar installations are 
located on the roofs (and occasionally parking shade ports) of 
large retail malls. Note that this excludes proper solar farms of 5 
MW established as part of REIPPPP or ‘wheeling’ deals (where 
a company owns a solar farm far from its base location that feeds 
into the Eskom grid). 

The fraction of shopping malls in the 0.5-5 MW capacity range 
differs substantially in some regions, with this figure as low as 
32% in the Western Cape and as high as 90% in KwaZulu Natal. 
Possible reasons for this will be advanced later. 

4. Domestic solar rooftop in residential areas

The outcome of the visual inspection of available Google Earth 
imagery for Parkhurst up to October 2022 and the in-the-field 
count of installations visible from the street in August 2023 are 
listed in Table 2.  

Table 2. Solar rooftop installations in the 343 property 
sample in Parkhurst, Johannesburg. 

Google 
Earth image 

date 

Properties 
with new solar 
installed since 

last image 

Monthly 
installation 

rate 

Total 
properties 
with solar 
installed 

2014 Jan 1 - 1

2015 Nov 3 0.13 4 

2018 Mar 1 0.04 5 

2018 Nov 2 0.25 7 

2019 Jul 4 0.50 11 

2020 May 7 0.70 18 

2021 Apr 5 0.45 23 

2021 Aug 3 0.75 26 

2022 Apr 6 0.75 32 

2022 Aug 8 2.0 40 

2022 Oct 5 2.5 45 

2023 Aug 51 5.1 96 

4.1. Rooftop solar census 

The total sample consisted of 343 properties that appeared to be 
residential households, although in some cases the properties 
might double up as small business operations. A minimum of 96 
of these had solar rooftop panels installed, a penetration level of 
28%. Of these, more than half had been installed in the 10 
months between October 2022 and August 2023. Given that not 
all solar installations are visible from the street, it is probable that 
the true number of installations is just over 100, meaning a 
penetration level of about 30%. This estimate is based on the 
number of installations confirmed in the October 2022 Google 
Earth imagery that can however not be seen from the street, 
either because a property has high walls, or because the panels 
are on the roof of an outbuilding behind the main building. 

The striking recent growth in domestic installations is evident in 
the plots in Figure 4. In this Figure, the green points represent 
the total number of households with rooftop panels installed, also 
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given in the last column of Table 2. The red triangles, also listed 
in column 3 of Table 2, represent the average number of 
installations per month for the period between the recording of 
the various Google Earth images. These were calculated by 
dividing the number of new installations since the previous 
image (given in column 2 of Table 2) to the number of months 
that passed between the date for that entry and the date for the 
previous image. 

 

Fig. 4. Growth of domestic solar rooftop installations in 
Parkhurst, Johannesburg.  

4.2. Rooftop solar panel orientation 

The visual survey also allowed insights into the choices made 
regarding the solar panel alignment in residential homes. 

Of the 96 properties with identified solar rooftop installations, 
56 appeared to have all their panels aligned towards the north or 
close to north, facing the street (as seen in Fig. 2, the sampled 
streets run approximately east-west). For 10 properties all panels 
appeared to be aligned facing the morning Sun in the east, while 
in 12 instances all panels appeared to face towards the afternoon 
Sun in the west. The remaining 18 properties had panels facing 
in multiple cardinal directions. It is likely that a number of 
properties counted above as entirely north, east or west facing 
actually have panels tilted in multiple directions, as not all 
rooftop panels are readily visible from the street in some 
instances. 

The Google Earth images and on-site inspections highlight that 
the area contains many high trees. Furthermore, some double-
storey structures exist, and because of the small property sizes 
these can be located close to neighbouring houses. Trees and 
neighbouring structures cast large shadows, which would have 
impacted on a particular property’s panel location decision and 
explains why comparatively many households chose to install 
their solar panels facing the morning or afternoon Sun rather than 
towards the normally optimal northern azimuth. 

 

5. Discussion 

5.1. The drivers of solar rooftop growth in South Africa  

The timelines illustrating the growth of solar rooftop 
installations in Tables 1 & 2 and Figures 3 & 4, can be explained 
by the changing influence of driving factors. 

Prior to 2016 there was relatively little interest in private solar 
installations, mainly due to financial considerations – electricity 
purchases from a then very reliable Eskom were cheaper than if 
this had been obtained through in-house solar power generation. 

In 2016, with the effective suspension of large solar farm builds 
through REIPPPP, the nascent solar industry actively sought 
alternative customers, and found these in large private 
organisations that had become aware of the international trend 
towards generating electricity internally through solar rooftop 
installations. By then the cost of solar power had dropped to the 
point where large-scale installations could be shown to be 
financially advantageous. 

When REIPPPP was resumed in 2018, major solar power 
developers again had the opportunity to engage in very large 
projects, and the previously accelerating rate of installations in 
the 0.5-5 MW range now stabilised. The economic downturn 
during the Covid-19 pandemic, including the associated 
uncertainty and loss of work hours due to lockdowns, may have 
even decreased the rate of solar installations for a while. 

From 2022 onwards the South African power crisis worsened to 
the point where at times electricity was cut for as many as 12 
hours a day. It also became clearer to the general public that the 
power crisis would not be resolved in the short term. This spurred 
a major move to install solar rooftop in domestic households, a 
sector that had up to that point been quite slow in making this 
leap. Reasons for this reluctance to embrace solar power 
technologies has been specifically studied in Parkhurst [11]. The 
sudden rise in solar installations in the Parkhurst sample from 
less than 1 installation monthly at the start of 2022 to over 5 new 
solar systems per month in 2023, highlighted dramatically by 
Figure 4, indicates that the inconvenience of power outages now 
outweighed the factors previously inhibiting the growth of solar 
power in the suburb. 

The spike in solar rooftop installations in the year leading to June 
2023 is also seen in estimated monthly installation figures 
released by national electricity utility Eskom [12]. Figures 
presented there projected a ~450% growth in South African solar 
rooftop capacity from just below 1 MW in March 2022 to about 
4.4 MW in June 2023, although the accuracy of these figures 
cannot be easily confimed. Evidence of this trend is further seen 
in solar panel import figures, where the value of imports in the 
first six months of 2023 exceeded the 2022 annual total [13]. 
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5.2. Regional differences 

Contrary to perceptions that the Western Cape is leading the 
move to transit to renewable energy in the country, this study 
confirms previous findings that Gauteng is the province with by 
far the largest solar capacity installed [14], in this case in the 
form of medium-scale (0.5-5 MW) facilities, with 40% of the 
national fraction of Base List installations and more than double 
the fraction held by the Western Cape. It is difficult to see how 
this finding would change substantially if data from a complete 
census of solar installations became available. 

Rooftop solar installations at shopping malls have been actively 
pursued around the country. These developments however only 
started in KwaZulu Natal in 2018, later than in other provinces, 
for reasons that remain to be clarified. Since then, the shopping 
malls in that province have however been some of the most 
actively movers towards solar power. In particular, Cornubia 
Mall in eThekwini and Boardwalk in Richards Bay now 
effectively have ~5 MW solar farms on their roofs [8]. 

The low percentage of shopping malls in the Western Cape is 
partly due to many installations in the 0.5-5 MW range on farms 
and food storage depots in that province [8].  

5.3. Projections for further solar rooftop 

It appears that by now the majority of larger shopping malls have 
installed some solar power capacity. Projections by retail groups 
themselves advocate the spread of this process to many malls that 
still do not have solar backup, e.g. [15]. At the same time, malls 
and other facilities with some solar capacity already installed are 
considering upgrades. Given the level of penetration already 
achieved, and with few signs that many facilities are projecting 
complete grid independence, it is likely that developments in the 
retail and corporate sectors will slowly saturate in the coming 
years. Accelerated growth is however still possible on farms, at 
mines and in industrial complexes. 

While not explicitly investigated here, it is likely that the uptake 
in new solar installations seen in Parkhurst since early 2022 
would have been a lot slower over the same period in lower 
income suburbs. This could however change given the 
opportunities for solar installation-linked loans by some 
financial institutions and the recent tax breaks offered by 
government [7]. The installation rate witnessed in Parkhurst this 
year would result in solar panel market saturation in the suburb 
within four years, and it therefore cannot be sustained. 

This study also offers insights into the likely future spread of 
embedded power generation as a whole in South Africa. The 
Base List records facilities in the 0.5-5 MW range adding to a 
total capacity of ~250 MW, and this is in turn estimated to 
include about half of the actual solar facilities of that magnitude. 
The contribution by smaller installations (<0.5 MW) and 

individual sets of panels on domestic rooftops is even more 
difficult to estimate. Their total capacity can reasonably be 
expected to be of the order of the total installed capacity of 
facilities in the 0.5-5 MW range. That would imply that South 
Africa currently has an estimated 1000 MW of solar small 
embedded electricity generation capacity. This figure is three 
times higher than an estimated 330 MW suggested for 2020 [16]. 
Solar rooftop is therefore currently playing a more significant 
role in electricity production than previously assumed. 

6. Conclusion

This paper highlights the increasing penetration of small scale 
solar rooftop installations in South Africa. It shows how medium 
scale (0.5-5 MW) solar installations, particularly at retail malls, 
multiplied manyfold after the stalling of the construction of large 
scale solar farms under REIPPPP. The major acceleration in 
domestic rooftop installations has only happened during the last 
year or two. It has been particularly noticeable in specific areas 
with relatively high income, but is bound to also strongly 
establish itself in medium income neighbourhoods due to offered 
financial incentives and the prospect of long-term savings. 
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Abstract: An unreliable energy supply is accelerating the 
transition to solar energy for South African industry and 
households. As solar photovoltaic (PV) module installations 
increase, so does the need to create systems to deal with the 
current and future e-waste produced. PV modules degrade in 
performance over the 20–25-year lifetime of the module with a 
normal power loss of less than 1% per year. However, early-life 
failures can occur if modules are damaged or are of poor quality 
and thus can degrade faster. With only limited recycling of PV 
modules occurring, a circular economy approach has yet to be 
developed in South Africa. A circular economy designs out 
waste, circulates materials at their highest possible value and is 
regenerative by design. Recycling is the least desirable of the 
circular economy activities due to the loss of value in the 
materials. Reuse and repair are potentially more ideal as they 
retain the product's inherent value. This paper places PV end-of-
life within the context of South Africa's e-waste recycling and 
energy landscape. The potential benefits around business 
development and employment for a secondhand market in PV 
are referred to. The paper provides a context for understanding 
issues around PV Module reuse and repair in South Africa.  
Keywords: Solar PV Modules; Reuse; Recycling; Circular 
Economy; End-of-Life; E-waste. 

1. Introduction 

Renewable energy (RE) adoption is essential to meeting global 
carbon emission targets and mitigating climate change. Although 
solar PV energy systems offer great benefits, for it to be a truly 
sustainable option, attention must be placed on the components' 
entire life cycle, especially at end-of-life (EOL). There has been 
limited research on the potential adverse environmental and 
human health implications of unmanaged waste from PV energy 
systems [1]. Whilst this continues, solar PV cannot be considered 
a truly sustainable energy source. When e-waste, such as PV 
modules, is treated as a resource instead of waste, this will open 
up greater economic opportunities [2].   

The study aims to explore the demand for PV reuse applications 
and the barriers and opportunities for employment creation in 
this field. This paper outlines the background to e-waste, the 

current energy landscape and PV module recycling in South 
Africa. It introduces the concepts associated with PV module 
reuse and provides a context on the need for a PV module reuse 
market. The study will include primary research through a 
survey to assess the e-waste and PV energy sectors' perceptions 
of barriers, enablers, and drivers for this circular economy 
solution. However, the survey results were unavailable at the 
time of writing this paper. 

The structure of the paper includes a definition of the circular 
economy (Section 2), background to e-waste (Section 3), and the 
framework to consider findings on the reuse and repair of solar 
PV modules (Section 4). A brief overview of the South African 
solar energy landscape is provided in Section 5, and then issues 
around solar PV EOL and potential social and economic benefits 
are detailed (Section 6). The research gaps filled by the current 
work are described in Section 7 before concluding (Section 8). 

2. The Circular Economy 

A Circular Economy (CE) designs out waste and pollution, 
circulates materials and products at their highest value for as long 
as possible, and is regenerative, aiming to improve the 
environment, not just reduce negative impacts [3]. This is 
achieved through production and consumption practices that 
redesign, repair, remanufacture, refurbish, reuse or recycle 
materials. Thus, disposal should be the option of last resort for a 
product at its EOL. Global extraction, processing and 
manufacturing methods are linked to 62% of global greenhouse 
gas emissions [4]. Thus, exploring EOL solutions not only 
impacts waste and pollution levels but also reduces carbon 
emissions. 

3. E-waste 

Electronic waste or e-waste "…refers to discarded end-of-life 
and end-of-use electrical and electronic equipment (EEE)." [2, p. 
52]. PV modules fall under EEE [5]. E-waste is the world's 
fastest-growing waste fraction. The Global E-Waste Monitor 
2020 indicated that 53.6 million metric tonnes (Mt) of electronic 
waste (excluding PV waste) was generated in 2019, an increase 
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of 21% in 5 years[6]. The PV waste fraction was omitted from 
the calculation as ComTrade data was unavailable [6]. Drivers 
of e-waste are increasing levels of urbanisation and 
industrialisation globally and higher levels of disposable income, 
leading to higher consumption rates of EEE. South Africa 
generated 416 kt or 7.1 kg per capita of e-waste in 2019 [6]. Only 
18 kt is estimated to have been recycled in 2015; however, waste 
statistics are unreliable thus, this is assumed to be an 
underestimate of e-waste recycling [7].   

The South African e-waste supply chain relies heavily on 
informal waste pickers and small-scale recyclers for collection 
and dismantling. Estimates of waste pickers vary between 60 000 
and 90 000, up to 215 000 [8]. Formal recyclers then will 
predominantly export to overseas processors [2].  

E-waste is categorised as hazardous under South African law as 
it may contain toxic materials if disposed of incorrectly. Several 
legislative amendments have changed the environment for e-
waste. The National Norms and Standards for Disposal of Waste 
to Landfill of 2013 banned e-waste from being disposed of at 
landfill sites [9] and took effect on 23 August 2021 [2]. South 
Africa has also moved from a voluntary Extended Producer 
Responsibility or EPR environment to a mandatory one. EPR is 
an approach to dealing with the negative impacts of waste 
through reassigning responsibility for the EOL of a product or its 
packaging to the producer. EPR legislation took effect on 5 
November 2021, covering the lighting, electrical & electronic 
equipment and packaging sectors. This has implications for EEE 
product producers, importers and installers, including PV energy 
systems. Regarding the amendments to the National Waste Act, 
any person or company who imports or manufactures these items 
is responsible for their EOL management.  

These are positive moves in terms of introducing a circular 
economy approach to e-waste, moving South Africa away from 
"the age of landfill" [2, p. 54] to the age of voluntary and now 
mandatory EPR.  

Barriers experienced within the South African e-waste value 
chain include: 

• An overwhelming percentage of e-waste in South 
Africa is exported due to a lack of infrastructure for 
processing these waste products [51]. The unfortunate 
Catch 22 is that the small domestic market discourages 
companies from setting up e-waste collections, but the 
small domestic market is due to limited companies 
offering collections.  

• Large volumes of valuable e-waste are lying in storage.  
• Small recyclers face cash flow constraints and 

unreliable volumes 
• Very high costs involved in formal e-waste 

certification.  
• The lack of local product markets limits demand and 

local processing.  
• At the disposal stage, high disposal costs are a cost for 

formal businesses and trigger illegal dumping [2].  
• Cherry picking occurs [2], which is extracting only 

high-value and high-grade materials for recycling and 
leaving the waste fractions that are not economically 
viable for disposal.  

Dumping unwanted components and burning plastic to access 
the high-value waste fractions[2] by informal collectors is a 
direct result of cherry picking. Informal recycling collectors lack 
storage facilities and equipment to break EEE, whilst plastics 
used in EEE have come in contact with flame retardant chemicals 
and thus cannot find a market to be recycled. This results in the 
inevitable and highly unfortunate consequences of dumping and 
burning e-waste. The presence of informal sector recyclers 
tackling PV waste is seen as a constraint to effective EOL 
management in countries such as China [10], as the informal 
sector lacks knowledge of the products and only recycles a small 
portion before discarding the remainder. The South African 
government's perspective is that the informal sector plays a vital 
role in the recycling value chain and should not be excluded but 
instead supported[11]. Thus, investigating how PV e-waste can 
also assist small-scale and informal recyclers is an important 
research area. 

4. A Framework for Analysing Opportunities for 
Solar PV Module Repair and Reuse  

Current literature has focused mainly on recycling as an EOL 
strategy for PV waste [1][15]. Themes in research have included 
studies on efficient EOL management strategies for PV energy 
systems using material flow analysis [13], as well as life cycle 
assessments of technologies [14], including concentrator 
photovoltaics [15]. Other studies have estimated the climate 
impacts of circular EOL for solar PV [16] or sought the 
perceptions of consumers and manufacturers on PV EOL [17]. 

Salim et al. [1] developed a conceptual framework for the solar 
energy system circular economy based on a systemic review of 
papers in the field. This framework illustrated in Figure 1 
comprises Drivers, Barriers and Enablers.  

The Drivers are why stakeholders would participate in a circular 
economy for solar energy systems, i.e., the opportunities. These 
are categorised into three clusters: economic, social and 
environmental [1].  
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Barriers are the limitations to implementing a circular economy 
for solar PV modules and battery energy storage systems (BESS) 
needs. These are summarised into five clusters:  

• policy and economic;  
• social;  
• market;  
• environmental;  
• and recycling infrastructure.  

The Enablers are the measures needed to overcome barriers to 
implement a circular economy for PV systems. The enablers are 
categorised into the following clusters: policy and economics, 
social, market, behavioural and recycling technology and 
infrastructure [1].  

This conceptual framework offers a useful tool to analyse the 
findings of this research and for comparison with studies 
undertaken in other countries.  

5. The South African Solar Energy Landscape 

South Africa's energy mix heavily relies on coal at 72% of 
energy generation [18]. The push for RE transition has 
historically focused on Independent Power Producer agreements, 
which have allowed private energy companies to develop utility-
scale PV plants in South Africa. Cumulative utility-scale PV 
power generation stood at approximately 2 371 MW in 2022[19]. 
Nationally, there has been growth in the energy services sector 
due to above-inflation electricity price rises, increased national 
energy insecurity due to persistent load-shedding, lower costs of 
RE generation, more favourable RE policy and regulations and 
new financing models[20]. Unreliable energy supply is 
leveraging the demand from industry and households to source 
alternative energy solutions. In 2022, South Africa experienced 

its worst year of load-shedding, with 208 days of power 
outages[21], with 2023 \ on track to beat this record. The South 
African solar energy market is expected to have a Compound 
Annual Growth Rate (CAGR) of 10.56% over 2022-2027 [22]. 
The country's cumulative solar PV capacity was 4 172 MW in 
2021[19].  

Rooftop solar for commercial/industrial, agricultural and 
residential applications grew by 60%, 45% and 30% CAGR, 
respectively, between 2020 and 2022 [19]. This sector's growth 
has been spurred due to changes in the regulatory environment. 
In 2022, energy generation capacity was added of between 800-
900 MWp, valued at R7.5 billion. The rooftop solar market is 
expected to grow to a total capacity of 10 GWp by 2035, with a 
market value of approximately R100 billion [20]. In terms of 
employment, the expansion of energy services generates 
approximately 1250 jobs per 50MWp per year[20]. 

The majority of solar PV modules are imported, with minimal 
manufacturing occurring in South Africa[23]. There are, 
however, a few locally based manufacturers, such as ARTsolar, 
Ener-G Africa and Seraphim Solar.  

6. Solar PV End-of-Life  

South African households generally have poor recycling 
behaviours and low recycling rates of e-waste, at only 11% [24]. 
As solar PV modules become increasingly part of household and 
business electronics, developing accessible EOL options, 
educating consumers on responsible disposal, and enforcing 
anti-dumping and landfilling restrictions will become crucial.    

Globally, over 6 000 square kilometres of solar PV modules have 
been installed [25, p. 39]. By 2050, global PV cumulative 
installed capacity will total 4 500 GW[26]. PV waste could 
exceed 10% of e-waste streams, with cumulative PV waste 

Fig. 1. Conceptual Framework for a Circular Solar Energy Supply Chain. Adapted from Salim et al. 
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conservatively estimated at 60 million tons by 2050 [26].  

South Africa's cumulative PV waste is estimated to grow to 
between 8 500 tonnes and 80 000 tonnes by 2030 and between 
750 000 and 1 million tonnes by 2050 [26]. These figures align 
with the Policy Adjusted Integrated Resource Plan (IRP) of 
2019, indicating South Africa's goal for installed PV capacity by 
2030 to be 8 288 MW[27]. 

To keep pace with the growing global demand for solar energy, 
this will increase demand for silver and indium materials, both 
critical raw materials. If global solar energy were to reach TW-
scale power generation by 2050, at least half of global silver 
resources would need to be devoted to this application [25]. 

PV modules degrade in performance over the 20–25-year 
lifetime of the module. Typically, there is a power loss of less 
than 1% annually [28]. However, early-life failures can occur if 
modules are damaged or of poor quality. Then degradation can 
occur at a faster rate. Large PV plants will also repower, replace 
or upgrae modules to maximise production. So, even in the best-
case scenario of all modules operating ideally and lasting their 
full-service lifetime, there is a potential for large volumes of PV 
waste at EOL. 

6.1. A circular economy for PV modules 

A circular economy approach to EOL solutions for PV modules 
would consider options around reuse, remanufacturing and 
refurbishment, and designing for disassembly. Assessing 
opportunities for reuse aligns with the waste hierarchy outlined 
in South Africa's 2020 National Waste Management Strategy.  

Electronic goods and their components in current circulation 
have a higher value than their component materials[29]. Thus, 
there are significant advantages to extending product lives and 
undertaking repair and reuse activities. Figure 2 offers an 
overview of what a circular economy for PV modules could look 
like. The diagram illustrates that consumers can access repair and 
maintenance services from installers and distributors before 
EOL. Alternatively, the unit could be remanufactured through 

the manufacturer. At EOL, landfill disposal would be avoided 
through parts reuse or recycling.  

Recycling has thus far been the main circular economy strategy 
employed in the supply chain. However, recycling has a number 
of challenges, including financial viability and low 
concentrations of valuable metals within PV modules. 

The capacity of PV recycling plants, the types of PV modules 
recycled[30], and the volumes of waste handled [13] were found 
to be critical aspects of the financial viability of PV module 
recycling. Only large industrial-scale or multi-use recycling 
plants were found to be financially feasible [30]. 

Globally, PV modules are unpopular for recycling, as 90% of the 
market are first-generation solar cells based on crystalline silicon 
technology, with low concentrations of valuable metals [31]. 
Recyclers are mainly interested in the remaining 10% of the PV 
market for recovering critical earth metals. However, the cost of 
recycling outweighs the value of recovered materials[31].  

Another critical challenge in PV module recycling, as opposed 
to other e-waste, is the 20-year life span of PV modules. It thus 
takes time for recyclers to collect enough volumes of waste to 
make recycling viable [32].  

6.2. Social and Economic Benefits of a circular 
economy for PV modules 

A circular economy transition that extends product lifespans is 
linked to improvements in the state of the environment, positive 
economic impacts and social benefits such as skills 
development[33]. Potential social and economic benefits that 
this study will be considering include: 

• Job and business creation 
• Access to testing to provide quality assurance to 

consumers 
• Social justice through greater inclusion in energy 

transition 

SMEs were identified as the stakeholders predominantly 

Fig. 2. Circular Supply Chain for Photovoltaic Systems adapted from [1, p. 540] 

 

17



  
  

responsible for solar PV reuse, remanufacturing and repair in the 
developing world [13]. Small business involvement in PV EOL 
activities was identified as a significant opportunity, especially 
around product repair, disassembly and remanufacturing [13]. 
There are also opportunities for new CE business models around 
remanufacturing, sharing and leasing [13] of PV modules. To 
take full advantage of any circular economy options around PV 
modules, the collection and sorting of this waste type needs to be 
improved, as with e-waste in general. Collection systems that 
have been recommended for e-waste in South Africa are trade-
ins. The barrier to trade-ins is the difference in customers' 
perceived and actual market value of returned electronics. The 
opportunity is that it would unlock waste electronics in storage 
and create sustainable, consistent volumes for the CE businesses 
[34].  

Employment in the construction and installation of commercial 
and industrial solar PV systems in South Africa was estimated to 
create between 5.3 and 8.0 full-time equivalent (FTE) jobs per 
MW[35]. In comparison, rooftop systems are projected to create 
between 6.1 and 9.2 FTE jobs per MW during construction and 
installation [35]. A CE for PV modules could support job 
creation in new areas of the value chain. European estimates 
indicate that 63 jobs are created per 1000 tonnes of collected 
electrical equipment waste [36]. In the US, electronics repair and 
remanufacturing could support 200 jobs per 1000 tonnes 
compared to 15 jobs for recycling that same amount [37]. Thus, 
in theory, reuse and repair should offer greater employment 
benefits in South Africa than recycling PV modules.  

A key barrier for the reuse market is access to testing and 
certification of secondhand modules. The costs of current 
accredited testing services are prohibitively expensive and 
require expensive equipment. Crozier McCleland et al. [38], a 
paper emanating from this study, considers the development of 
repair and reuse criteria for PV modules. A key market challenge 
will be to ensure that modules can be accurately and cost-
effectively tested, that they are safe for use, that consumers trust 
secondhand modules and that they can be supplied to the market 
at a reasonable price compared to new modules.   

The United Nations Sustainable Development Goal (SDG) 7 is 
to 'Ensure access to affordable, reliable, sustainable and modern 
energy for all' [38]. Thus, access to RE should be available to all, 
and no communities should be left behind. The Just Energy 
Transition offers opportunities for new jobs, business, greater 
social justice, etc. [39]. This study asks whether a secondhand 
PV module market could place solar energy within the grasp of 
more households, especially low-income households in South 
Africa. Thus promoting social justice and inclusion in the RE 
transition.    

7. Research Gaps and Study Methodology 

Internationally, studies have focused on developed nations [13], 
experimental and modelling research methodologies, and the 
recycling aspect of PV modules. South Africa's informal sector, 
its exponential growth in solar PV and the geographical 
dispersion of utility-scale PV plants requires an analysis of its 
unique challenges. 

Moyo et al. (2022) identified the need for more research in the 
field of e-waste in general in South Africa that focused on 
infrastructure, technology transfer and policy gaps. Research is 
needed considering solar PV modules at EOL beyond recycling 
and how reuse applications can have social and economic 
benefits. Researchers should consider consumer uptake of 
secondhand solar as well as the policy and legal ramifications in 
more detail. The focus of EOL PV module research globally has 
been in developed nations; who consider exporting 
decommissioned PV modules to the Global South a viable reuse 
alternative. Exporting low-quality PV modules to other countries 
can be considered dumping [33], especially if there are no 
systems for waste management within the recipient countries.   

This study aligns with these identified gaps in the research. The 
study's methodology uses an exploratory research approach due 
to the limited information available on this topic within South 
Africa. A mixed methodology design using quantitative and 
qualitative data collection will occur simultaneously. At the time 
of writing this paper, ethics approval for a survey questionnaire 
and interview guide had been received. A survey will collect data 
from the energy sector on future demand for EOL services and 
the potential for reuse and repair. A semi-structured interview 
will be undertaken with e-waste recyclers working in PV 
recycling and key informants in the energy and e-waste sectors. 
The discussions will access data on levels of cooperation in the 
life cycle and barriers and drivers for reuse. The findings will be 
analysed within Salim et al. (2019) conceptual framework for a 
Circular Solar Energy Supply Chain (Figure 1). Thus providing 
a better understanding of how to develop a PV circular solar 
supply chain within South Africa with a focus on business and 
employment opportunities.  

8. Conclusion 

If a linear approach to producing, using and then discarding PV 
systems is maintained, it undermines the sustainability of this 
critical renewable energy source. The recent growth of South 
Africa's solar energy sector means larger volumes of modules 
that will one day need EOL solutions and increased volumes of 
current waste through faults and breakages. The need for an 
efficient EOL management system is more pressing considering 
the limited e-waste collection and recycling systems within 
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South Africa and developed nations' plans to export EOL 
modules to the developing world. The opportunities for reuse 
have had limited research attention and require an understanding 
of consumer preferences, regulatory frameworks, quality 
controls and market viability. The social and economic 
opportunities around a reuse market for PV include greater job 
and business creation across the value chain, informal sector 
integration, and greater access to RE, thus promoting a just 
energy transition and social justice.  
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Abstract: As South Africa experiences a dramatic increase in 
the uptake of solar energy so will Photovoltaic (PV) waste 
eventually increase either due to end-of-life or due to early 
failures. In the waste hierarchy, reduction and reuse are preferred 
to recycling or disposal. The ability to reuse or repair a PV 
module prevents the need for a new module from being 
manufactured which ultimately contributes to waste.  This paper 
discusses the testing processes necessary to determine if PV 
modules can be reused, repaired or recycled at end-of-life. There 
are currently no standards for the testing of second-hand modules 
and the modules in this study are evaluated against the 
IEC 61215 Certification Standard. The testing includes Visual 
Inspection to identify module defects, Electrical Insulation to 
confirm module safety, Electroluminescence to detect invisible 
cracks and Maximum Power measurements to determine the 
module performance. These are compared to expected values for 
a module of that age to determine the module’s suitability for 
resale or reuse. Where reuse is not possible repairs or 
refurbishments of PV modules are suggested and the safety of 
these repairs is assessed. If reuse or repair is nor possible then 
the PV modules are recommended for recycling. 

Keywords: Photovoltaic; Circular Economy; PV Module Testing 

1. Introduction

The Solar Photovoltaic (PV) market has increased dramatically 
in the past decade. By 2050 global PV cumulative installed 
capacity is expected to be 4 500 GW [1]. The growth in this 
industry has stressed the need to deal with expected PV waste 
and ensure that the limited resources needed in PV module 
production are conserved. PV waste is expected to contribute a 
substantial portion (>10%) of e-waste streams with cumulative 
PV waste conservatively estimated at 60 million tons [1]. A 
circular economy designs out waste, circulates materials at their 
highest possible value and is regenerative by design [2]. A 

circular economy approach to PV modules encourages reuse and 
repair and treats recycling as the least desirable option, 
preferable only to disposal. 

PV module waste is generated at all four life stages of a PV 
module, these being [1]: 

1. Production
2. Transportation
3. Installation and Use
4. End-of-life disposal.

In addition to this, module failures occur throughout the lifetime 
of a PV module, according to the “bath tub” curve, figure 1, the 
probability of early failures decreases with time and  the failure 
rate will stabilise over the useful life and then increase at end-of-
life (EoL)[3].  

With the improvements in PV module efficiency, it can be 
financially viable to repower a system, and replace the 
operational modules with new modules [4]–[6]. This could 
introduce second-life modules into the market after only 15 years 
of plant operation. 

Figure 1: The Bathtub curve indicating the failure rate 
over the technical lifetime of the PV module[3]. 
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The issues of PV module waste and options for second-life 
modules are global and present in all countries with an 
established PV industry. Many countries expected to offset the 
cost of repowering by the sale of second-hand modules in 
developing countries in Africa and South Asia [1], [7], [8].  

In line with international developments, the South African 
government acted by gazetting mandatory Extended Producer 
Responsibility legalisation for electronics [9]. This has created 
the necessity for any person or company who imports or 
manufactures PV modules to account for proper disposal and 
treatment of PV modules at end-of-life.  

In South Africa, it is possible to recycle up to 96% of the mass 
of a PV module [10]. Internationally it has been proven that it is 
possible to separate the 99% of the PV module components 
allowing for the precious materials to be separated at high quality 
[11]. Although technically feasible to recycle PV modules, there 
remains limited demand for waste fractions from the most 
commonly sold PV modules in South Africa, thus recycling is 
constrained by financial and market feasibility.   

Despite these advances in recycling, it is still preferable to reuse 
PV modules. Testing and sorting are important steps in diverting 
as much PV waste from disposal as possible and ensuring that 
modules are safe and reliable.  

2. PV Market – South Africa 

In South Africa, Independent Power Producer agreements have 
allowed private energy companies to develop utility-scale PV 
plants; with power generation of approximately 2 371 MW in 
2022 [12]. The unstable national power grid which leads to 
rolling blackouts (loadshedding) has resulted in a dramatic 
increase in the uptake of PV, from the rooftop residential to the 
Commercial and Industrial market (C&I) market [13]. 

The predominant PV technology in utility-scale projects is 
crystalline silicon[14]. The trend of module production is 
towards larger modules with glass-glass (g//g) or bifacial 
structure [15]. The increasing size of modules can decrease the 
levelized cost of electricity (LCOE) by reducing the associated 
component costs, labour and handling but the disadvantage is 
that these modules are heavier and easier to damage during 
transport [16].  The increased size of the module means a failure 
in any component in a PV module results in the entire module 
failing and a larger volume of waste. 

Thin-film technologies make up 12% of the installed operational 
utility scale REIPP projects and 555 MW is planned in bid 
windows 5 and 6 [14]. The size and degradation issues associated 
with thin-film modules mean they will contribute to the PV waste 
volumes. The specific technical challenges associated with 

testing thin-film modules are not addressed in this paper. 

The reuse of PV modules could offset the costs of recycling 
broken and irreparable modules, making end-of-life 
management more cost-effective. Introducing new activities into 
the PV module value chain could spur new job creation and 
circular economy business development. A related conference 
paper by Crozier, Schenck, McCleland and van Dyk considers 
the social and economic opportunities that a reuse market for 
solar PV modules could offer South Africa [17].  

3. Module Reliability and Degradation 

The quality of a PV module is controlled by the manufacturer 
during the fabrication process, the modules are assessed against 
a certification standard which is designed to ensure a lifetime of 
25 years [3]. 

In the real world, modules are exposed to stress factors (internal 
and external) that affect their performance and lifetime. These 
factors include the environmental conditions and internal factors 
such as the bill of materials (BOM) of the module [3]. These 
factors can result in module failures occurring before the 
predicted end of life. 

In South Africa, due to the relatively young PV industry, there is 
limited research on early module failures from operational PV 
plants. Also due to the competitive industry, this information is 
not publicised. There have been published reports of large-scale 
backsheet failures of utility-scale PV plants which are less than 
10 years old which indicates the potential for early-life module 
failures [18]. Recent studies indicate backsheet and polymer 
degradation is one of the cause of poor module performance in 
large-PV plants in South Africa [19], [20]. 

4. Sorting and Testing Process 

The modules that the Sorting and Testing process applies to are 
End-of-life modules, modules with early failures, or module 
from repowered PV plants. 

The testing process is outlined in figure 2, to ensure the safety 
and performance of the PV modules, and to be a guide to 
determine if PV modules are suitable for either reuse or 
recycling. Some modules will have the potential to be reused 
after repairs are completed. The  feasibility of modules repairs is 
determined by the repair technology, the economic incentives, 
and skills available. Repaired modules or a representative sample 
will need to be retested before they can be reused and any repairs 
result in the process restarting at the first testing step as indicated 
in figure 2. 
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Figure 2: Basic outline of the PV testing process developed in this study. PV modules are guided through Safety (Visual 
Inspection, Insulation Resistance and Wet leakage) and Performance (Power and EL) testing with the outcome being either 
reuse or recycling. 
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4.1. Safety tests 

4.1.1. Visual Inspection 
Visual inspection is the first testing step required and is an 
important step in determining the reuse potential for PV 
modules. Broken glass is the most common module defect and is 
a result of poor module handling, transportation or severe 
weather conditions such as hail [3]. This failure is twice as likely 
with glass/glass (g/g) modules than with glass/backsheet 
modules [21]. There are limited repair options for broken glass, 
with procedures to fix the glass with applied resin only showing 
lab-scale testing feasibility [22]. Modules with broken glass are 
allocated for recycling. 

The backsheet of the module can show visible signs of 
degradation including delamination, cracking, yellowing, and 
chalking [23]. Examples of backsheet damage are illustrated in 
figure 4. Burn marks are an immediate safety concern and should 
be flagged for further testing. Cracks or voids in the back surface 
can result in moisture ingress and a decrease in the insulation 
resistance of the PV module. In some situations, it is possible to 
repair a degraded back sheet by reapplying a back sheet film over 
the old film [24], [25]. This relatively simple repair might 
address the root cause of the backsheet damage, and it is not 
appropriate for burn marks nor will it undo the effect of moisture 
ingress through delamination.  

Damage to the frame is normally due to mechanical stresses. If 
the frame is damaged with no damage to the glass, the module 
has the potential to be repaired. 

Modules which have broken junction boxes or damaged external 
cables should be sorted for repair and further electrical safety 
testing. These failures include failed bypass diodes and are 
feasible to repair based on the module construction and the 
experience of field operators [6]. 

Figure 3: Examples of PV modules with broken glass 

4.1.2. Electrical Insulation testing 
The Insulation Resistance test and Wet Leakage tests are 
important safety tests and are designed to ensure that there is no 
current flowing between the cell circuitry and the frame [26]. 

Low insulation resistance has been linked to inverter shutdowns 
in the field, especially in the mornings when modules are wet 
with dew. This results in reduced production as these faults need 
to be clear before normal operation can resume [27]. These tests 
are conducted by applying a high voltage to determine the 
insulation resistance with the module either dry or in a shallow 
water bath. The challenges of this test is that it is time-consuming 
in both the setup time and the required test duration. It is 
however, very important to ensure the modules are safe for reuse. 

a) b) 

[Source:21]

c) 
Figure 4: Image of module Back sheet defects including 
a)delamination, b)burn marks and d)cracks [23].

4.2. Performance testing 
It is a decision point in the testing process whether to do 
Maximum Power testing or Electroluminescence testing or both. 
Both tests give valuable information on the performance of the 
PV module. The module power gives an indication of the long-
term reliability, so the Power test is prioritised if only limited 
testing is avaible.  

4.2.1. Maximum Power Measurements 
The Current-Voltage (I-V) characteristics of a PV module are 
measured using a Solar Simulator that meets the requirements of 
the IEC6064-9 Ed3. In this study, a full spectrum long pulse 
A+A+A+ LED flasher was used. The parameters measured 
include; Maximum Power (PMAX); short-circuit current (ISC); 
open-circuit voltage (VOC), current at maximum power (IMPP) 
and Voltage at maximum power (VMMP). These parameters give 
an indication of the degradation and failures present in the 
modules and are needed for future PV installation design [28].  

The Solar Simulator is an expensive piece of equipment and the 
more cost-effective alternative is an I-V curve tracer which can 
only be used outdoors under natural sunlight. The disadvantages 
are increased measurement uncertainty and less control of 
environmental conditions. 

Figure 5 shows the I-V curves of two 540W PV modules. 
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Module 1 has an IV curve that does not indicate any defects or 
failures and the PMAX measured is 542.7W, which is in the 
expected range for a new module. Module 2 has a step in the I-
V curve which indicates cell damage within the module and the 
measured PMAX is only 470.9W. 

Figure 5: IV curves of two 540W PV modules. Module 1, 
modules has an expected I-V curve shape and Module 2 
has a step  indicating the module has damaged cells. 

Using a digital multimeter (DMM) to measure the module’s ISC 
and VOC is possible and this is often offered as a solution to 
measuring PV module performance at a hobbyist/consumer level 
as the equipment is inexpensive. It can be used to confirm that 
module is functional, however, as can be seen in figure 5, just 
measuring the current and voltage would not give you the full 
picture of the power loss. The decreased VOC gives an indication 
that cells are not operational in the module, however, the 
resolution of the DMM might not detect the relatively small 
decrease.  

4.2.2. Electroluminescence 
Electroluminescence (EL) imaging of photovoltaic modules is an 
imaging technique that can identify cracks, disconnected 
busbars, shunting and other cell defects [29]. The process can be 
done at two bias levels; 1) with injected current at 110% Isc, used 
for detecting cracks and defects, and 2) 10 % Isc for detecting 
Potential induced degradation (PID) shunting, Light and 
elevated temperature-induced degradation (LETID) effects. EL 
imaging can be done on-site, either with modules on the racks at 
night or for module removed from rack in a dark- room.  

Figure 6 shows examples of EL images for the two 540W 
modules that were introduced in figure 5. In Module 1, figure 6 
a), there is a single cell cracked, which due to the cell multi-
busbar configuration has minimal effect on the power output. In 
comparison module 2, figure 6 b), has an entire row of cells 

damaged, as confirmed by the I-V curve results. 

a) 

b) 
Figure 6: EL images of a) Module 1, with one cracked cell 
visible and b) Module 2 with several cracked cells visible. 

4.3. Process 

4.3.1. Thresholds of Acceptance 
The levels that are determined to be acceptable can be set based 
on the requirements of the end use and hopefully would be based 
on some minimum standards/regulations set for PV module 
reuse. In the absence of these, initial simplified acceptance 
criteria are detailed in Table 1. 

Table 1. Test acceptance levels for the Sorting/ Testing 
Criteria 

TEST – OK –
Visual Inspection Mechanically sound with no visible 

safety concerns. 

Electrical Insulation 
Testing 

Meet the minimum requirements of 
IEC61215 [26]. 

Power Above expected power output based 
on the manufacturer-given 
degradation rate and age of the 
module. 

Electroluminescence 
(EL) 

No cell cracks that would prevent the 
module from operating normally or 
result in localised heating. 

The Power acceptance should also account for the fact that even 
if the module is below the expected manufacturer warranty it 
could still operate at a lower power for years to come. It is 
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important to give some form of expected lifetime for a module. 
Modules that do not meet the stricter lifetime requirement could 
be given a much short lifetime, two years for example to ensure 
appropriate costing for the PV system. 

These thresholds are suggested and will be refined based on 
further research. 

4.3.2.  Repairs 
The option for repairs has been included in the process as it is a 
vital step to ensure that modules are diverted from recycling. The 
cost-effectiveness of repairs remains to be seen and further 
investigation is required. 

5. Conclusions

PV module testing has been identified as an important step in the 
safe reuse of PV modules and diverting them from disposal on 
landfill. The challenges in this process include the lack of testing 
standards and the costs involved in testing. These costs would 
make testing for PV module second life out of reach of normal 
rooftop solar customers, unless either an incentive, subsidy or 
penalties for incorrect disposal are applied. There are also 
opportunities to reduce the complexity of testing to make testing 
more accessible and financially feasible. The ideal testing 
process is outlined in figure 2, based on the test process described 
in the IEC 61215 standard. However, in terms of PV reuse and 
recycling the costs of completing all the tests described on every 
module would be prohibitive. Solutions to this include 
streamlining of test processes, using the most cost-effective 
equipment, reducing the time needed for testing and testing 
samples that can be extrapolated to the batch.  

Encouraging a reuse market in South Africa not only requires 
thorough quality control mechanisms such as testing, but policy 
frameworks, government and industry support and a financially 
viable business model.  
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Abstract 

Photovoltaic (PV) modules deployed in the field experience 

changes in load conditions, soiling and shading levels. These 

dynamic operating conditions affect the interpretation of thermal 

imaging and electrical characterisation measurements. This 

study investigates the dynamics of the operational current and 

voltage (I-V) and thermal characteristics of a poly-crystalline PV 

module and individual cells to understand the behaviour of the 

cells at different cell shading levels and module operational 

voltages. When the module operates at maximum power voltage 

(VMP), the voltage of a shaded cell becomes negative (reverse 

bias) at a shading level of 8% and the temperature of the whole 

cell is elevated. The operational temperature of a shaded cell 

increases when the shaded cell area is between 8 to 40% 

reaching a peak temperature when the shaded cell area is 

between 40 and 50%. The cell’s temperature decreases for 

shading levels 50 to 100% when the bypass diode of the 

substring containing the shaded cell appears to be activated. 

When the operational voltage of the module is <VMP, a small 

shading level of 4% causes reverse biasing of the shaded cell, 

while at operational voltages >VMP, the cell becomes reverse 

biased by shading levels ≥50%. A cell can easily be mismatched, 

operate in reverse bias, and cause abnormal thermal signature 

when the module’s operational voltage is <VMP unlike when 

operational voltage is >VMP. Therefore, when a PV module is 

shaded, it is beneficial for the operational point to be >VMP, since 

the mismatched cells will not become abnormally hot to cause 

detrimental effects such as module back sheet damage, cracks, 

risk of fire and increased module degradation rate. This work 

gives valuable information which can advance the interpretation 

of thermal images and I-V curves of PV modules. 

Keywords: poly-crystalline cells; cell mismatch; current-voltage 

characteristics; thermal signature 

1. Introduction

The series connected poly-crystalline silicon cells of a 

conventional PV module require all the cells to be electrically 

equally matched to generate the expected maximum power. 

However, when operating in the field, the performance and 

efficiency of the cells and modules can be influenced by 

environmental factors such as temperature, soiling and shading. 

These environmental factors shift the operational maximum 

power point (MPP) of individual cells, modules and strings and 

can result in current and voltage mismatch [1][2][3]. Since the 

MPP always shifts, the inverters in PV systems will ensure the 

supply of optimum power to the load by constantly tracking the 

MPP of PV module strings [4][5][6]. One of the main 

consequences of mismatch is the inability of cells to produce the 

same current with the result that underperforming cells are 

forced to operate at lower voltages, or even negative (reverse 

bias) voltages, resulting in performance degradation of the PV 

module [7][8][9]. This study investigates the effects of changing 

cell shading levels and module’s operational point on the thermal 

and electrical characteristics of a poly-crystalline PV module.  

PV modules installed in the field can experience shading due to 

soiling, bird droppings, trees, poles, buildings and nearby 

structures. Shading due to soiling is dynamic in nature and is 

unavoidable since PV modules are installed outdoors at an 

inclination for optimum capture of solar radiation and 

conversion efficiency. The inclination angle can result in the 

wind-blown dust settling on and shading the cells. Shading can 

cause reverse biasing and heating up in affected cells when the 

shaded cells dissipate electrical energy generated by good cells. 

This results in a current mismatch between the cells and 

substrings [10][11][12], and causes non-uniform temperature 

distribution in the modules enabling the bad cells to be located 

as hot cells on Thermal Infrared (TIR) images [13][14]. The 

effects of abnormally hot cells is lessened by using the bypass 

diodes incorporated in the PV modules. The bypass diodes 

minimise the abnormal heating effect on bad cells by providing 

a current path around the affected substring [15]. However, if the 

bypass diode continuously conducts the current produced by the 

string and no corrective action is taken then it will eventually get 

damaged and the scenario can result in fire when the cells 

overheat [16].   
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Regular inspection of PV modules is crucial for the early 

detection of anomalies in solar cells which can develop and 

impact on the performance of the modules, return on investment 

and cause safety issues. Unmanned Aerial Vehicle (UAV) based 

TIR imaging is an inspection technique widely applied in large 

PV plants since it is cost-effective and is conducted in-situ, while 

the plant is operating at irradiance levels above 600W.m-2. TIR 

imaging is carried out under clear sky and low wind conditions 

with the angle of capture almost perpendicular to the plane of the 

modules to avoid reflections [14][17][18][19]. One of the 

outcomes of the interpretations of TIR images is an attempt to 

quantify the energy loss in PV plants associated with the 

abnormal thermal signatures identified in TIR images. No 

standard procedure has yet outlined the quantification of energy 

loss related to TIR images of underperforming modules since the 

interpretation of TIR images remains a challenge. The effective 

judgement and interpretation of thermal signatures in PV 

modules remain a challenge since many factors such as 

operational conditions, the emissivity of a target object, thermal 

reflections, capturing angle, etc., can influence TIR images 

[20][21]. Being able to detect, identify and quantify the severity 

of cell anomalies, cost-effectively, on operational PV modules is 

essential for a reliable, efficient and safe system. Therefore, 

detailed information regarding the behaviour of individual poly-

crystalline silicon PV cells under different shading levels can be 

obtained when TIR images of the modules are captured under 

different modules’ operational voltages with a concurrent 

recording of the electrical characteristics of individual cells. 

2. Experimental procedure

Figure 1 shows the experimental setup for measuring the 

operational electrical characteristics of a poly-crystalline silicon 

PV module and individual cells in the module. The module 

consists of series connected cells that are arranged in three 

substrings SS1, SS2 and SS3 with a bypass diode across each 

substring. 

Fig.1: The poly-crystalline silicon PV module set up for TIR 

imaging and voltage measurements of individual cells. 

Individual cell contacts were made to the module to measure 

each cell's voltage and thus monitor cell mismatch. EL imaging 

was performed with a MBJ mobile-Lab 3.0 unit to check for any 

EL features and if any cracks were introduced when contacts 

were made.  

The measurements were recorded when cell-shading levels of 4 

to 100% were applied on one cell while the module was 

receiving irradiance of 700 - 1000W.m2. Different sizes of the 

opaque shading material were accurately cut and placed, one at 

a time, on the front side of the cell, to shade a definite area, 4-

100%, of the cell while recording the measurements. Figure 2 

shows a visual image of the module with a shading of 60% on 

cell 51 in substring (SS) 3. 

Fig.2: Visual image of the poly-crystalline module 

showing cell numbering in substrings SS1, SS2 and SS3, 

and partial shading on cell 51. 

TIR images of the module were recorded concurrently with the 

cell voltage measurements while the module was operating at 

different voltages: 13.0V, 28.0V, 30.0V and 33.0V. The 
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operational voltages were achieved by varying an external 

resistive load.  

The electrical measurements were recorded using a data logger 

(Agilent 34972A) at 5-second (s) intervals with an uncertainty of 

approximately 1 µV [22]. TIR images of the module were 

captured, as recommended by Jahn et al. [14], after adjusting the 

resistive load, thus changing the module’s operational voltage. 

The TIR camera (FLIR T620) was positioned at 4 meters above 

the module’s front surface with the angle of capture almost 

perpendicular to the module’s front surface to keep away from 

reflections  [14][18]. 

3. Results

Figure 3 shows the EL images of the module recorded at (a) high 

current (110% ISC - High EL image) and (b) low current (10% 

ISC – Low EL image) to identify pre-existing cell anomalies that 

can cause inherent mismatch. There are minor cracks on cells 1, 

20, 47 and 52 which run diagonally across the cell and were 

observed before and after making cell contacts. Cells 1, 20, 47 

and 52 are enlarged in Figure 3(c), (d), (e) and (f), respectively, 

so that the cracks in the cells can be noticeable. All fingers of the 

cracked cells appear to be connected to the busbars and there are 

no dark or isolated cell parts, thus the cracks did not impact the 

performance of the module. There are no dark cells on the Low 

EL image, hence no shunt paths or PID are present on the cells. 

Figure 4 shows the voltage measurements as well as thermal 

characteristics of the individual cells that were recorded 

simultaneously when the module’s operational voltage was 

28.0 V (VMP) and while shading cell 51 between 4 to 100%. The 

figure shows the correlation between the operational voltage of 

the shaded cell and its thermal characteristics. The graphs show 

the operational voltages of the 60 cells in the module while 

cell 51 was shaded. When cell 51 is shaded at 4%, its operational 

voltage is reduced to 0.31V from 0.53V, signifying a mismatch 

due to the partial shading. The operational temperature of the 

whole-cell 51 is not influenced by the small 4% shading, but a 

hot strip is seen on cell 51 on the TIR image (a) due to the 

difference in emissivity of the module glass (0.92) and the 

opaque shading material (paper: cardboard 0.81) [23]. The 

shading material radiates higher thermal energy than the module 

glass and hence appears hotter on the TIR image (a). 

When the shading area is increased from 8 to 100% on cell 51, it 

significantly affects the operational voltages of individual cells. 

At an 8% shading level, the voltage of cell 51 becomes negative 

(reverse bias) and the cell starts dissipating some of the module’s 

generated electrical energy. When the cell becomes reverse-

biased, the temperature of the whole-cell 51 increases. The 

temperature increases up to a shading level of 40%. As the 

shading level increases to 40%, the voltage of the shaded cell 51 

becomes more reverse biased. The temperature of the cell was 

measured on the unshaded part of the cell on the TIR image. 

Smaller changes in voltage of cell 51 occur from a shading level 

of 50% to 100%. The operational temperature of the shaded cell 

increased with the shaded area between 8 to 40% reaching a peak 

between 40 and 50%. The cell’s temperature decreased for 

increased shading levels of 50 to 100% when the bypass diode 

of the substring containing cell 51 appears to be activated. The 

bypass diode diverts the module current around the shaded 

substring, SS3, as evidenced by an increase in the junction box 

temperature containing the bypass diodes and a small increase in 

the temperature of the whole substring SS3. The substring SS3 

is now at an elevated temperature compared to the other two 

substrings SS1, and SS2 because much of the solar radiation 

incident on substring SS3 heats the cells instead of generating 

electrical energy. TIR images in Figure 4(e), (f) and (g) show 

that the substring SS3 is at an elevated temperature compared to 

substrings SS1 and SS2. The main focus of this study is to 

analyse the behaviour of cell 51 under different shading levels 

and changing the module’s operational voltage. The behaviour 

(current and voltage characteristics) of the unshaded cells is 

High EL image Low EL image 

a b 

c d 

e f 

Fig.3: EL images of the polycrystalline PV module taken 

at (a) 110% and (b) 10% of the ISC. Cells 1, 20, 47 and 52 

are enlarged in (c), (d), (e) and (f) respectively. 
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discussed by Vumbugwa et. al. 2020 [3] when similar results 

were obtained after shading a cell. 

  

 

a b c d e f g 

Fig.4: Cell voltage measurements together with TIR images taken when the module 

was at maximum power point and cell 51 was under different shading levels. 

Figure 5 shows the effects of the shading levels, 4-100%, on 

cell 51’s voltage when the module’s operational voltage is (a) 

13.0V, (b) 28.0V, (c) 30.0V and (d) 33.0V. When the module’s 

operational voltage is 13.0 V, Figure 5(a), the voltage of cell 51 

becomes negative for all the shading levels 4-100%. Thus, 

cell 51 operates in reverse bias when the shading levels of 4-

100% are applied to the cell. The trends of cell 51’s voltage in 

Figures 5(a) and (b) are similar, however, the cell operates at 

different negative voltages for the shading levels of 4-25%. An 

example showing the difference is when the cell is 8% shaded, 

and is highlighted with a dotted red rectangle in Figure 5(a) and 

(b). When the module’s operational voltage is 13.0V, 

Figure 5(a), the reverse bias voltage caused by the 8% shading 

level on cell 51 is -7.6V, while the same shading level resulted 

in the cell operating at -1.37V for a module operating voltage of 

28.0V. Thus, the impact on reverse biasing due to partial shading 

is influenced when the module’s operational voltage is shifted. 

When the module’s operational point is <VMP and closer to ISC, 

the impact of shading on the electrical characteristics of the cell 

becomes severe. 

The operating voltages of cell 51 when the shading levels of 4-

100% were applied, at different module’s operational voltages, 

are shown in Table 1. At each module’s operational voltage, the 

minimum shading level which causes cell 51 to operate in 

reverse bias is different. When the operational voltage is 13V, 

the minimum shading level of 4% will cause the shaded cell 51 

to operate at -5.10V, while when the module’s operational 

voltage is close to VOC, e.g. at 30V and 33V, the minimum 

shading levels to reverse bias the cell are 50% and 75%, 

respectively. Thus, when the module’s operational voltage is 

<VMP, a small shading level of 4% causes cell 51 to operate in 

reverse bias, but the same shading level cannot reverse bias the 

cell when the module’s operational voltage is >VMP. The 

highlighted, red-dotted rectangle in Figures 5(c) and (d) shows 

the impact of a shading level of 90% on the voltage of cell 51 

when the module’s operational voltage is 30V and 33V. When 

the shading level is 90%, cell 51 is reverse biased to -10.3V and 

-8.47V at the module’s operational voltage of 30.0V and 33.0V,

respectively. Thus, the shading cause less impact on the

performance of the cell when the module’s operational voltage

is closer to VOC.
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Fig.5: Cell voltage measurements taken when cell 51 was under 

different shading levels, 4-100%, at module’s operational 

voltage of (a) 13.0V, (b) 28.0V, (c) 30.0V and (d) 33.0V. 

Figure 6 shows the graphical representation of the results in 

Figure 5 and Table 1. The figure shows that when the module’s 

operational voltage is 13.0V, blue graph, all shading levels cause 

cell 51 to operate with negative voltages, as previously 

discussed. The green graph shows the voltage of cell 51 when 

the module is operating at 28V. For this graph, cell 51 is forward 

biased (positive voltage) for a shading level of 4%, the other 

shading levels, 8-100%, resulting in cell 51 being reverse biased 

(negative voltages). For the module’s operational voltages of 

30V and 33.0V (black and red graphs), cell 51 is reverse biased 

when it is under shading levels of 50-100% and 70-100%, 

respectively. Therefore, the impact of shading on the voltage of 

cell 51 is less when the module’s voltage is closer to VOC. 

A current mismatch between good and bad cells in a module can 

easily occur when the module’s operational point shifts from 

MPP towards ISC, along the module’s I-V curve, and is unlikely 

to occur when the module’s operational point shifts towards VOC. 

At operational points <MPP, the modules deliver a large current 

and a significant current mismatch and energy dissipation can 

occur [24], such that the small shading level of 4% can easily 

cause the whole cell to become abnormally hot and be seen on 

TIR images. The same small shading level on a cell cannot cause 

energy dissipation when the module operates at closer to VOC due 

to minimal current mismatch.   

It is shown in Figure 4 and also explained by Vumbugwa et. al. 

2020 [3], that when a cell operates with a negative voltage, the 

whole cell appears abnormally hot on TIR images and its 

temperature increases with an increase in reverse bias voltage to 

a point when the bypass diode on the substring containing the 

shaded cell is active. In the study, by Vumbugwa et. al. 2020 [3], 

the effect of cell shading levels on the voltages of the unshaded 

cells is illustrated and explained. When a PV module is partially 

shaded, or underperforms, it is beneficial for the operational 

point to shift towards VOC, since the bad cells will not become 

abnormally hot to cause detrimental effects such as module back 

sheet damage, cracks, risk of fire and increased module 

degradation rate. The bad cells in a mismatched module, 

operating in a string, will easily get reverse biased and appear 

abnormally hot on TIR images when the module’s operational 

point is less than its MPP. However, when the module’s 

operational point is >MPP, the bad cells will not appear 

abnormally hot on TIR images as the cells may not be operating 

with negative voltages. When the operational point of a 

mismatched module shifts towards VOC, along its I-V curve, the 

bad cells will not be reverse-biased and appear as good cells on 

TIR images. This scenario can mislead decision-making during 

TIR inspections of PV modules in PV plants.  
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Table 1: Cell 51 voltage measurements 

Module’s 

operational 

voltage 

(V) 

Cell shading level (%) 

4 8 12.5 25 40 50 60 75 90 100 

13.0 -5.10 -7.66 -8.23 -8.76 -9.25 -9.48 -9.76 -9.99 -10.2 -10.6

28.0 +0.51 -1.37 -4.01 -6.81 -9.36 -9.60 -9.90 -10.1 -10.3 -10.7

30.0 +0.53 +0.53 +0.53 +0.53 +0.53 -1.41 -6.33 -10.1 -10.3 -10.8

33.0 +0.53 +0.53 +0.53 +0.53 +0.53 +0.53 +0.50 -4.34 -8.47 -10.8

Fig.6: Graphical representation showing forward and reverse bias voltages on cell 51 at different 

module’s voltage and when the cell was under shading levels of 4-100%. 

4. Conclusions

In this study cell shading levels of 4-100% were applied on one 

cell of a poly-crystalline PV module when the module was at 

different operational voltages: 13V, 28V, 30V and 33V. At 13V, 

a small shading level of 4% could reverse bias cell 51, but for 

higher operational voltages of 28V, 30V and 33V, the cell could 

only operate under reverse bias conditions when bigger shading 

levels were applied. The shift in the module’s operational 

voltage causes the change in the current and voltage operational 

point of mismatched cells and influences current mismatch and 

dynamics of abnormal thermal signatures. A current mismatch is 

influenced when the module’s operational point shifts from 

MPP. The bad cells can easily emerge on TIR images when the 

operational voltage shifts towards ISC unlike when the 

operational voltage shift towards VOC, along the I-V curve. Thus, 

the level of current mismatch will determine when a bad cell 

emerges as a hot cell on TIR images since the shading level 

which causes the shaded cell to change from positive (generating 

power) to negative voltage (dissipating power) depends on the 

module’s operational point. If the operational point of the 

module shifts towards VOC, bad cells can be missed on TIR 

images, due to minimal current mismatch, and can mislead 

decisions when TIR inspections are carried out in the field. The 

detailed information in this paper can add value to the operations 

and maintenance of PV modules when TIR imaging inspections 

are conducted for long-term reliability and hence an improved 

return on investment of the PV plants. 
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Abstract: 

Estimation of solar photovoltaic (PV) module operating 

temperature is an important component of accurate PV system 

simulation and design. Faiman’s module temperature model 

provides a simple method of estimating PV module operating 

temperature using empirical heat dissipation factors (HDFs) and is 

widely used in PV simulation. This paper presents HDFs for open-

rack and floating solar PV (FPV) configurations based on 

measurements collected on installations near Stellenbosch, South 

Africa. The paper allows for direct comparison of the HDFs for 

these different PV configurations under similar solar and ambient 

conditions. Differences in the thermal characteristics of the 

configurations are thus highlighted and potential design factors that 

influence FPV’s heat dissipation are outlined. 

Keywords: module temperature; open-rack PV; floating 

photovoltaic (FPV); Faiman model; heat dissipation factors  

1. Introduction

It is well known that photovoltaic (PV) systems are susceptible 

to efficiency losses when exposed to high module operating 

temperatures. Various methods have therefore been developed to 

accurately predict the operating temperatures of PV systems. 

Faiman’s [1] model is commonly used to model the heat 

dissipation of PV modules by correlating the wind speed, 

ambient temperature, and plane of array (POA) irradiance to the 

operating module temperatures. Faiman’s model has been shown 

to be relatively accurate across a wide range of PV technologies 

and climatic operating conditions [2] and provide comparable 

accuracy to more complex models [3].   

Heat dissipation is a critical factor in PV system performance as 

it directly impacts the modules' temperature and thus efficiency. 

Different PV configurations (e.g., ground-mounted open-rack, 

building-attached or floating) experience unique thermal 

operating conditions and thus display distinct heat dissipation 

characteristics. For example, ground-based open-rack systems, 

typically used for large-scale operations (such as utility-scale or 

commercial PV installations), facilitates relatively uninhibited 

airflow around the panels. Natural air currents and wind can thus 

reach and cool the modules and relatively low module 

temperatures are expected.  

Floating solar PV (FPV) systems are installed on the surface of 

still water bodies and are an emerging technology that can be 

used in regions with limited land resources for ground-based 

open-rack PV installations. FPV systems can also contribute to 

water security (they reduce the amount of water loss due to 

evaporation throughout the day [4]) and can be coupled with 

hydropower systems, reducing the cost of renewable energy 

generation [5]. In theory, these systems should offer improved 

heat dissipation due to the proximity to a cool water body and 

some research has shown that FPV systems can be more efficient 

than ground-based systems [6]. However, there is limited 

literature on the thermal behaviour of these water-based systems. 

A method to specifically determine the heat dissipation factors 

(HDFs) and cell temperature of FPV systems is presented in [7]. 

The model shows acceptable correlation to measured values 

however it has not been extensively validated for FPV 

technology. Dörenkämper et al. [8] modelled the HDFs of FPV 

systems to determine the impact of different float designs and 

climates on the HDFs of FPV. 

This paper utilizes the Faiman model to predict the heat 

dissipation factors (HDFs) for a ground-based open-rack PV and 

FPV system operating in close proximity (and thus under similar 

operating conditions), enabling a direct comparison between the 

thermal behaviour of the two technologies. By analysing the heat 

dissipation characteristics of FPV configurations, valuable 
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insight into their respective efficiencies and potential design 

considerations can be gained. 

2. Experimental Setup and Methodology

The test sites are located in the Western Cape province of South 

Africa, with a straight-line distance of 12.7 km between the two 

sites (see Fig. 1). The region is characterised by a Mediterranean 

climate with an average maximum summer temperature of 25℃ 

and minimum winter temperature of 9℃ [9] and high solar 

resource, 1 649 kWh/kWp [10].  

Fig. 1. Geographical map of PV installations 

2.1. Open-Rack Installation Details and Data Gathering 

The open-rack PV installation monitored in this work is shown 

in Fig. 2, and located at Mariendahl farm outside Stellenbosch, 

South Africa. Two PV modules (CS3W-420P) were mounted at 

a fixed tilt angle of 31°, facing North. The module is rated with 

an efficiency of 19% and a nominal module operating 

temperature (NMOT) of 42±3 ℃. The modules were connected 

in series to a 136 Ω 4 A resistive load, allowing the modules to 

operate in a closed-circuit condition during the test period. 

Fig. 2. Mariendahl open-rack system 

Two T-type thermocouples were attached to the back side of 

each module using aluminium tape, positioned at a central and 

corner cell respectively (similar to Faiman [1]). All module 

temperature data was logged at one-minute intervals using a 

Lord TC-Link 200 and recorded using a Lord WSDA Base 

Station and SensorConnect software. Ambient temperature, 

wind speed and POA irradiance were collected from a weather 

station installed near the open-rack structure shown in Fig. 2. 

Ambient temperature was measured with a shielded HygroVUE5 

digital temperature sensor. Wind speed and direction were 

measured with a R.M. Young 03002 wind sentry and vane. The 

POA irradiance was measured with a Kipp & Zonen CMP10 

pyranometer installed on the open-rack structure, in-plane with 

the modules. 

2.2. FPV Installation Details and Data Gathering 

The FPV system is located at Marlenique Estate, Stellenbosch, 

South Africa (Fig. 3). The PV system consists of 10 x 18 PV 

modules (CS6U-320P modules) at a fixed tilt angle of 16°. The 

modules are rated with an efficiency up to 16.97% and a nominal 

operating temperature (NOCT) of 45±2 ℃. Charge controllers 

ensure that the modules operate at their maximum power point. 

The temperature of the centre module in the Northern row is 

measured. This module was chosen since its operating 

environment is likely to be most similar to the open-rack case 

(limited packing effect in the FPV array), ensuring a comparable 

assessment to the open-rack experiment. 

Fig. 3. Marlenique FPV system 

The module and ambient temperatures were measured using a 

RSPRO PT100 and Campbell Scientific CS109 thermocouple 

respectively. Two module thermocouples were taped slightly 

offest from the back face’s centre position. The system’s 

equipment was instrumented by the Institute for Energy 

Technology (IFE) in Norway, therefore the system configuration 

differs somewhat from the open-rack installation.  

Marlenique 

(FPV) 

Mariendahl 

(open-rack) 

33.827000°S, 

18.957764°E 

33.853427°S, 

18.823940°E 

6 km 

Weather station Open-rack setup 
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Fig. 4. Weather station at FPV installation 

The wind speed measurement was taken with a Gill Windsonic 

wind sensor, while the POA irradiance was measured using a 

Kipp & Zonen CMP10 pyranometer that is installed in-plane 

with the PV module tilt angle. The pyranometer and wind speed 

sensor were both attached to a GeoSun weather station (Fig. 4). 

The weather station is attached to a mast at the back of the array 

and stores the data in 1-min intervals. Additionally, the ambient 

temperature is measured at the centre of the array. 

2.3. Data Processing 

Thermal models that evaluate the heat dissipation factors for PV 

modules often assume steady state conditions. Rapid fluctuations 

in operating conditions therefore degrade the accuracy of the 

models and filtering is applied to limit the analysis to times of 

relatively stable conditions. Such filtering is standard practice for 

thermal measurements on PV modules and an IEC standard [11] 

has also been developed that describe the measurement and 

filtering requirements. 

For our data, the application of the filtering practice (specifically 

the filtering of wind) according to the standard resulted in a 

major reduction in acceptable data points on the open-rack 

system, and in contrast virtually no difference in the data for the 

FPV system. 

In light hereof, and as our paper determines heat dissipation 

factors according to the Faiman model, we decided to implement 

the same filtering strategy as the original paper by Faiman [1]. 

This strategy does not filter based on wind data, and applies the 

following: 

• Data is stored as 5-min averages.

• Only days with clear sky conditions (i.e. only minor

observable irradiance fluctuations) are to be considered.

• Analysis period between 10 am and 2 pm.

For the open-rack installation the module temperature was 

calculated by averaging the two thermocouple measurements for 

each module. Out of a potential 92-day testing period between 

2023/03/30 and 2023/06/29, data from 29 days with clear skies 

provided a total of 2330 useable data points. 

Fig. 5. Unfiltered clear sky data for the FPV site 

The GeoSun weather station at the FPV site also reported the 

average values of the two module thermocouples. During an 

analysis period of 58 days (2022/08/31-2022/10/28) for the FPV 

installation, only 13 days had clear sky conditions, resulting in 

610 useable data points. The impact of clear sky filtering on the 

FPV data is illustrated in Fig. 5 (unfiltered) and Fig. 6 (filtered). 

Fig. 6. Filtered clear sky data for the FPV site 

2.4. Faiman Module Temperature Model 

The thermal model proposed by Faiman [1] utilizes 

meteorological data as inputs and is based on the Hottel-

Whillier-Bliss [12, 13] equation. The modified equation by 

Faiman decomposes the overall HDF into two components: a 

constant factor (U0
′ ) and a wind-dependent factor (U1

′ ). The

combined effects of radiation and natural convection heat 

transfer are represented by U0
′ , while forced convection heat

transfer via wind is represented by U1
′ . Faiman relates these

parameters to the module and ambient temperatures (Tmod and

Tamb), POA irradiance (H), and wind speed (vw).
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H

U0
′ + U1

′ ∙ vw

= Tmod − Tamb (1) 

HDFs are determined from experimental measurements of 

temperature, POA irradiance and wind speed by linear 

regression. 

3. Results and Discussion

3.1. Environmental Conditions 

To evaluate the similarity of the environmental test conditions 

for the two sites, histograms of the POA irradiance, wind speed 

and ambient temperatures are presented in Fig. 7 and 8, over the 

respective test periods. The variables are normalized with respect 

to the open-rack configuration’s maximum values. The open-

rack configuration measured values of Hmax = 1175.2 W/m2,

vw,max = 6.37 m s ⁄ , and Tamb,max = 32.8 ℃.

The FPV site exhibited higher average wind speeds, whereas the 

open-rack site consistently encountered a broader range of wind 

speeds. Both sites maintained similar POA irradiance values 

throughout the day, with slightly elevated values on average 

observed at the FPV site. Unlike the open-rack site, the FPV site 

did not reach the maximum POA irradiance. On average, the 

FPV site also recorded higher ambient temperatures during the 

day, although it did not reach the peak temperature observed at 

the open-rack site. The distribution (negatively skewed) of the 

ambient temperature for the FPV site can be attributed to the 

fewer available data points for the analysis period in comparison 

to the open-rack analysis period. Overall, the disparities in 

environmental conditions were deemed acceptable for 

facilitating a direct comparison. 

Fig. 7. Open-rack normalised environmental conditions 

Fig. 8. FPV normalised environmental conditions 

3.2. Open-Rack PV Results 

The results for the open-rack configuration are shown in Fig. 9. 

The U0
′  and U1

′  values (25.70 W/m2K and 9.90 Ws/m3K

respectively, with R2 = 0.79) compare well to those initially 

determined by Faiman [1] (U0
′ = 25 W/m2K, U1

′ =

6.80 Ws/ m3K, R2 = 0.63) and open-rack experiments

conducted at Stellenbosch University [14] (U0
′  = 26.5 W/m2K

and U1
′  =5.2 Ws/m3K at a tilt angle of 23°).

Fig. 9. Open-rack HDF curve 

From the 29 clear sky days, data from three different days are 

highlighted in colour in Fig. 9, and their behaviour and influence 

on the dataset are examined. In the figure, we observe two outlier 

days (red and blue) and one trend-aligned day (green) for the 

open-rack system.  

For the day represented by green markers, the increasing trend 

in HDF aligns with a gradually increasing wind speed (over a 

large range) throughout the day. Little fluctuation in 

instantaneous wind speed (limited gusts) during this period 
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results in little HDF variation around the trendline. 

The magnitude of POA irradiance, wind speed and ambient 

temperature are similar for the days represented by the red and 

blue data. There is however greater fluctuation in wind speed for 

the day in red versus the day in blue, causing the respective 

difference in scatter on the graph. Despite the similar 

atmospheric conditions, module temperatures for the blue data 

are higher. As a result, H/(Tmod − Tamb) is lower due to the

higher denominator, causing the data points to sit below the 

trendline. It is our hypothesis that the difference in module 

temperature between these two days can be ascribed to a 

difference in wind direction. 

A comparison between the measured and predicted (using the 

HDFs and Eq. 1) module temperatures is shown in Fig. 10. The 

model predicted the measured temperatures with a root-mean-

square error (RMSE) of 2.56 ℃. This compares well with the 

RMSE of 1.86 ℃ obtained by Faiman [1] and 1.7-2.5 ℃ in [5]. 

Fig. 105. Open-rack temperature prediction 

3.3. FPV Results 

Fig. 11 shows the FPV results. The coefficient of determination 

value of the fitted data is reasonably high (R2 = 0.73). However, 

it is worth noting that the FPV analysis had fewer data points 

available compared to the open-rack experiment and the smaller 

sample size may impact the results of the comparison. The 

regression analysis yielded values of 19.62 W/m2K and

10.91 Ws/m3K for U0
′  and U1

′  respectively.

Similar to Fig. 9, Fig. 11 also highlights the placement of HDF 

data in colour for three individual days from the total of 13 clear 

sky days collected. The behaviour of the red data can be 

explained by extremely high wind speeds cooling the module 

temperature to below 40 ℃. This causes the temperature gradient 

between the module and ambient air to be small, which causes 

H/(Tmod − Tamb) to be higher than the norm.

Fig. 11. FPV HDF curve 

A comparison (not shown) of the conditions for the green and 

blue data indicates a steady, moderate wind speed for the day in 

green, with a lower, gradually increasing wind speed for the day 

in blue. Even though the wind speed for the green data is higher, 

a higher module-to-ambient temperature difference is observed. 

The blue data also shows a higher sensitivity to the lower wind 

speed compared to the effects of wind on the day in green. Here, 

it is again our postulation that wind direction plays a role. 

The mean module temperature prediction for the FPV system has 

an RMSE of 3.72 ℃. The quality of the model’s prediction 

versus the measured module temperature can be seen in Fig. 12. 

Fig. 12. FPV temperature prediction 

The FPV HDFs found in this work compare relatively well to 

values reported in [8]. In [8], two distinct FPV systems were 

evaluated: one featured a closed float design and variable tilt 

panels (U0
′ = 24.4 W/m2K  and U1

′ = 6.5 Ws/m3K with R2 =

0.57), while the other employed a more open float array with a 

fixed panel tilt of 12° (U0
′ = 18.9 W/m2K and U1

′ = 8.9

Ws/m3K with R2 = 0.58) in the Netherlands and Singapore
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respectively. Data for each of these systems have been recorded 

on-site between 2017-2019. Additionally, two ground-based 

systems served as references near the two FPV sites: one in an 

open-rack configuration with a fixed panel tilt of 22° (U0
′ = 13.0

W/m2K  and U1
′ = 5.4 Ws/m3K with R2 = 0.52) and the other

was a rooftop-mounted system (U0
′ = 18.9 W/m2K and U1

′ = 8.9

Ws/m3K with R2 = 0.58) with a 10° panel tilt angle, located in

the Netherlands and Singapore, respectively. The FPV system in 

Singapore is similar in configuration to the system considered in 

this work, except for the larger tilt angle at the Stellenbosch site 

(16°). Dörenkämper et al. [8] identified a significant influence of 

wind speed on the HDFs and concluded that higher wind speeds 

over open water, as well as the cooler air near water bodies, 

constitute the primary contributors to enhanced heat dissipation 

in FPV systems. 

3.4. Discussion of PV Configuration Results 

The U1
′  value for the FPV system is higher than that of the open-

rack configuration (10.91 Ws/m3K compared to 9.90 Ws/m3K).

This is expected, due to higher wind spends carrying colder air 

[8] over FPV panels than for ground-based systems. When

comparing the HDFs determined in this work, the FPV shows a

lower U0
′  but higher U1

′  compared to the open-rack configuration.

The higher wind dependent HDF (U1
′ ) aligns with the findings

of [8] and the that the water provides cooler ambient conditions

around the installed modules. However, the lower FPV U0
′  (19.62

W/m2K compared to open-rack’s 25.7 W/m2K) value is

somewhat unexpected and points to the need for FPV systems to 

be carefully configured if the full potential of lowering their 

operating temperatures are to be realized (as noted in [15]).  

In this case, the FPV panels are less inclined than the open-rack 

system (16° compared to 31°). Lower tilt angles are typically 

chosen to mitigate wind loading on the system, but they may 

inadvertently impede natural convection heat dissipation. 

Furthermore, the presence of the float or the design thereof may 

further impact the ventilation of the back surfaces and, critically, 

prevents the back surface from being exposed to the cool water 

surface. The radiative heat loss from the back surface of the 

panels in the FPV case may thus be poorer than in the open-rack 

case. 

It is important to note that the connection of the open-rack 

modules to a load resistor does not necessarily mean that these 

modules were operating at their maximum power point, in 

contrast to the FPV modules which were controlled to operate at 

maximum power. It is expected that the HDFs of the open-rack 

system would increase if they were to operate at their maximum 

power point, as the module temperatures should theoretically 

drop due to greater power evacuation from the modules while 

POA irradiance and ambient temperature would remain the 

same. The HDFs for the open-rack installation in this study are 

therefore likely to be relatively conservative.  

3.5. Single Day Direct Comparison 

To gain a deeper insight into the different thermal behaviours of 

the two PV configurations, a comparison is performed on a day 

with similar environmental conditions (POA irradiance, ambient 

temperature, and wind speed) as shown in Table 1. 

Table 1. Environmental conditions for single day 

comparison 

FPV - 2022/09/12 

MIN MAX MEAN 

Module Temp [℃] 28.9 46.5 40.7 

Ambient Temp [℃] 14.5 18.4 16.6 

Tmod − Tamb [℃] 14.4 28.1 24.2 

POA Irradiance [W/m2] 637.5 983.3 885.3 

Wind Speed [m/s] 0.80 2.65 1.39 

U0
′ + U1

′ ∙ vw [W/m2℃] - - 36.58 

Open-rack - 2023/06/10 

Module Temp [℃] 29.3 42.6 38.2 

Ambient Temp [℃] 14.6 17.7 16.2 

Tmod − Tamb [℃] 14.7 24.9 22.0 

POA Irradiance [W/m2] 598.1 892.4 813.7 

Wind Speed [m/s] 1.23 2.48 1.78 

U0
′ + U1

′ ∙ vw [W/m2℃] - - 36.99 

The data analysis reveals that the effective heat dissipation 

(represented by H/(Tmod − Tamb) = U0
′ + U1

′ ∙ vw) for the two

systems are virtually equivalent. This evaluation for a single day 

of similar conditions shows that, despite the lower averaged U0
′

value obtained for the FPV system compared to the open-rack 

system, comparable heat dissipation from the FPV can be 

achieved. 

4. Conclusion

The aim of the study was to compute and compare the HDFs 

according to Faiman’s [1] thermal model for open-rack and FPV 

systems operating under similar environmental conditions. 

Experimental measurements were taken at an open-rack and 

FPV solar installation, both of which are located near 

Stellenbosch, South Africa. The measurement data for the two 

PV installations were filtered according to the method prescribed 

in [1].  

The experimentally determined HDFs for the open-rack PV 

system align well with values reported in the literature [14], and 

the predicted temperature demonstrated an RMSE of 2.56 ℃, 

indicating a reasonably accurate model. The value found for the 

wind-dependent HDF was consistent with values found in 
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literature [8] for FPV systems. However, the results of the FPV 

experiment revealed a lower U0
′  than expected, with RMSE of

3.72 ℃ for the predicted temperatures. This suggests that, under 

low wind conditions, FPV systems dissipate heat less effectively 

than open-rack systems. 

When comparing the thermal behaviour of the open-rack and 

FPV system on a day with similar environmental conditions, it 

was found that the FPV system’s heat dissipation is comparable 

to that of the open-rack configuration. 

The FPV system's relatively small tilt angle and float design 

were identified as potential contributing factors affecting the 

wind-independent heat dissipation, leading to higher-than-

expected module temperatures, on average, compared to the 

open-rack configuration. This idea is further reinforced with the 

varying HDFs found in literature [8] for different FPV system 

designs. The floats used can affect the view factor the back of 

the FPV module experiences when radiating heat to the water. 

In conclusion, the study highlights the importance of considering 

various design elements in FPV systems to optimize heat 

dissipation and module performance. By understanding the 

impact of tilt angle, float design, and module positioning on heat 

dissipation, researchers and designers can better enhance the 

thermal behaviour of FPV systems, maximizing their energy 

efficiency and overall performance. 
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Abstract: Agrivoltaic systems offer the opportunity 
of utilising the solar resource of South Africa 
effectively without reducing agricultural 
productivity. A previous Geographic Information 
System (GIS) analysis has shown that less than 2% 
of agricultural land that is suitable for agrivoltaic 
systems (around 400,000 hectares) could potentially 
double the current annual electricity generation in 
the country. Most of the opportunity lies with 
livestock farming and maize production in the 
central provinces, but orchards and vineyards in the 
Western Cape Province may also be an option. This 
study summarises techno-economic analyses that 
were undertaken for agrivoltaic systems that are 
deemed (technically) the most viable for three types 
of farming operations, namely: grazing, maize and 
orchards. The results show LCOE values in the 
range of R1.08 to R1.72 per generated kWh. 
Compared to available import and export tariffs 
values across the provinces indicates that agrivoltaic 
systems may well be a feasible option for farmers in 
South Africa.  

Keywords: Agrivoltaics; economic analysis; 
agriculture; utility-scale PV; South Africa.  

1. Introduction

South Africa has seen significant growth in the solar 
energy sector (see Figure 1) with generation 
increasing from 2 TWh to around 7.6 TWh from 
2014 to 2019 [1].When it comes to land use for 
utility-scale photovoltaic (PV) systems there is a risk 

of ground mounted PV (PV-GM) systems taking up 
perfectly good arable land that could be used for 
farming, or possibly negatively effecting natural 
ecosystems. 

Figure 1. Installed Capacity in South Africa [2]. 

Agrivoltaic systems seek to address this issue by 
combining farmland and PV, thereby reducing or 
eliminating the negative effects on the land and, in 
some cases, improving the productivity of the soil 
[3]. This is done by reducing the panel density and 
elevating the PV system off the ground to lessen the 
system’s effect on the environment or crops below. 
This can take many forms and each implementation 
depends entirely on the context in question, which 
will decide the panel density and height for example. 
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Figure 2. Types of agrivoltaic systems that have been deployed commercially [3]. 

Examples of possible agrivoltaic configurations are 
shown in Figure 2, although there are a vast number 
of different implementations that can be used 
depending on the agricultural operations. 

The purpose of this paper is to analyse the techno-
economic feasibility of implementing grazing, 
maize, and orchard agrivoltaic systems in South 
Africa – the largest opportunities identified from a 
previous GIS analysis [4]. For the analyses the 
Levelized Cost of Electricity (LCOE) metric is used 
and compared to South African electricity tariffs to 
evaluate payback periods and the Return on 
Investments (ROIs). 

2. Methods

2.1. Crops chosen 
Grazing was chosen as it accounts for most of the 
farmland in the country [4]. However, it should be 
noted that most of this land is not formally cultivated 
and often remote compared to other farmed crops. 
Maize was chosen as it uses the largest area of arable 
land in South Africa and offers many locations for 
utility-scale PV projects to be implemented [4]. 
However, maize is shade-intolerant meaning 
module arrangements must be of low density. Fresh 
fruit production only makes up around 0.5% of the 
suitable land [4]. However, it does account for over 
50% of agricultural exports and the potential 
implications of agrivoltaic systems on the 

productivity of this sub-sector is therefore also of 
interest. 

2.2. Agrivoltaic technical configurations 
For grazing operations, the PV modules need to be 
positioned at least 2.8 metres above the ground to 
prevent damage from the cattle. Shading is not as 
much of an issue as compared to crops, but some 
sunlight is needed for the pasture. A panel density, 
or land cover area, of 30% was considered, although 
higher densities can be used. Maize operations need 
to allow clearance for farming equipment, so the 
modules need to be positioned 4.5 metres above the 
ground. Alternatively, vertical bi-facial modules can 
be used to reduce infrastructure costs. Due to the 
shade-intolerance of maize a panel density of 15% 
or less is required to minimise crop yield losses. 
Orchards require at least 5 metres of clearance due 
to the height of the trees. Due to the shading of the 
trees vertical modules cannot be used as with maize. 
However, their shade-tolerance means that panel 
densities of 30% can be used between the rows of 
trees. 

All these configurations can benefit greatly from 
solar tracking systems. The flexibility of positioning 
allows for mitigation against wind damage, 
clearance for vehicles by going fully vertical or 
horizontal not like what is observed in Figure 2. 
Control over microclimates under the modules can 
also be achieved, be it for frost protection by 
trapping humidity, soil water retention, or the 
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control of unwanted vegetation that would otherwise 
form under the panels [4][5].  

For the analysis three configurations that incorporate 
solar tracking with a single portrait (1P) panel 
arrangement and at a height of 5 metres (to allow a 
minimum height of around 3.5 metres at the lowest 
point of tracking) were considered to simplify the 
calculations and reduce the variables: 30% panel 
density (for beef and dairy farming/grazing), 15% 
panel density (for maize farming), and 30% panel 
density (for orchard farming/fruit). 1P is used based 
on standard industry practice for agrivoltaic systems 
and 5 meters is used to satisfy the minimum height 
requirement of all three agricultural operations. 
Figure 3 provides examples of operational systems 
elsewhere. 

Figure 3. 1P tracking systems used for grazing 
and orchard operations. Top [6], Bottom [7]. 

2.3. Economic analysis 
To evaluate the economic performance of a PV 
system the LCOE (Levelized Cost of Electricity) 
metric is primarily used:  

(1) 

With It the investment expenditure in year t, Mt the 
operations and maintenance costs in year t, Et the 
electrical energy generated in year t, r the discount 
rate, and n the lifetime, namely 30 years.  

Having an LCOE less than the electricity import 
tariff means that over its lifetime it will be worth 
more than importing power from the grid. Having it 
higher means that there is no economic incentive to 
invest in projects, as there will be an insufficient 
ROI (Return on Investment). This is not accounting 
for other incentives such as carbon emissions 
reduction and backup power if the grid is not 
available for periods of time. 

CAPEX, a component of the LCOE calculation, is 
also an important consideration. Due to the 
modularity of PV installations this value can to some 
degree be scaled to fit the project, albeit with LCOE 
values not scaling down linearly. 

The CAPEX and LCOE values per hectare for the 
three scenarios are calculated across multiple 
locations where the farming operations are primarily 
distributed in the respective province. These values 
are then compared to utility-scale PV systems in 
South Africa, as well as agrivoltaic systems in other 
countries. 

3. Techno-economic analysis

3.1. Costs of PV system 
While it is possible to calculate the hardware for an 
agrivoltaic system in terms of modules and inverters, 
rack mounting for agrivoltaic systems range in cost 
depending on the situation. Labour costs also vary 
considerably between projects. 

As such, where possible, costs are expressed in 
terms of cost per unit, but certain “soft costs” are 
rather expressed in terms of a percentage of the total 
project or other components over time where 
relevant. 

3.1.1. Cost assumptions 
The cost assumptions are summarised in Tables 1 
and 2. 

Table 1. Specifications of each scenario. 

Grazing Maize Fruit 
No. of modules 1160 1160 580 
Capacity (kW) 649.6 649.6 324.8 
Inverters (per ha) 0.54 0.54 0.27 
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Table 2. Cost assumptions across all scenarios. 

Min Max Comment 
Discount rate 6% [8] 8% [9] 
Racking costs 10% [9] 25% [9] Of project 
Soft costs* [8] 35% 37% Of project 
PV degradation [9] 0.5% Per year 
Lifespan 30 Years 
module cost** [10] R7.00 R8.50 Per Watt 
Inverter cost [11] R1.25 R1.50 Per Watt 
Inverter replacement 
in year 15 

7% [9] Of initial 
CAPEX 

Operational costs per 
year [8][9] 

1.5% 5% Of project 

* Soft costs refer to costs that are not attributed to hardware, e.g.
modules, racking and inverters. These costs include construction
and services such as labour and planning.
**Prices may be higher or lower than stated, due to different
sellers or macro-economic changes.

3.1.2. Cost calculations 
Calculating the initial capital cost from the figures 
outlined in Tables 1 and 2 ranges of R9.8 million to 
R14.2 million per hectare – for a 30% panel density 
– and R4.9 million to R7.1 million per hectare – for
a 15% panel density – are obtained from:

(2) 

For operational costs the replacement of all inverters 
in year 15, as well as a percentage cost for all 
hardware as outlined in Table 2, were considered:  

    (3) 

Where inverter replacement is 7% of initial capital 
in year 15. 

Yearly costs of R494.2 thousand to R713.1 thousand 
per hectare – for a 30% density – and R249.7 
thousand to R359.1 thousand per hectare – for a 15% 
coverage – are obtained.  

Combining all these costs gives a ZAR/Watt value 
range of R38.12 to R54.97 for 15% panel density, 
with the 30% values only differing slightly. 

3.2. Comparison with reported values 

3.2.1. Utility-scale PV systems in South 
Africa 

Utility-scale PV systems in South Africa have large 
ranges for ZAR/Watt values due to the year and 
conditions they were constructed, as well as the 

contractor used. The De Aar Project and Jasper 
Project [12][13] reported values of R43.37/W and 
R27.43/W respectively, with rough LCOE estimates 
assuming a 20-year lifetime of R1.37/kWh and 
R0.64/kWh. These projects were both built in 2014, 
which shows that economic values at this scale can 
vary considerably.  

Estimates from industry sources have put the current 
ZAR/Watt value closer to R12/W for an installation 
of around 75 MW (see acknowledgements). 

3.2.2. Agrivoltaic systems in other countries 
There are plenty of examples of overseas agrivoltaic 
implementations and the costs differ from project to 
project, with most ground mounted PV systems 
ranging from R23/W to R34/W compared to 
agrivoltaic systems, which typically range from 
R25.6/W to R37.6/W [3][14][15][16], although for 
specific projects costs as high as R44.74/W have 
been reported [3] (the reported ranges for grazing 
and maize agrivoltaics are provided in Table 3). It 
can therefore be assumed that, on average, an 
agrivoltaic system will cost at least 11% more than 
a ground mounted PV system due to the additional 
costs of the racking system. 

Table 3. Reports of similar agrivoltaic projects. 

Scenario Low High 
Grazing [9] R30.72/W R33.72/W 
Maize [4][5] R24.67/W R30.89/W 

By comparison the ZAR/W values from the analyses 
in this paper are much more conservative with the 
upper reported values of overseas installations being 
close to the lower estimate of the calculations. This 
implies that the cost estimates are extremely 
conservative, and the lower estimate of CAPEX is 
closer to real world values. However, it is better to 
overestimate the CAPEX values to ensure the 
projects financial goals are achieved. 

3.3. LCOE calculations 

Using Solargis [17] the values for PV output per 
month were simulated, based on municipalities 
located in each province (see Figure 4). These values 
are for a 15% coverage, but similar values can be 
expected for a 30% coverage.
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Figure 4. Simulated PV output (kWh/month) for the provinces of South Africa. 

LCOE rates are shown in Figure 5 for each province 
based on average seasonal values. The best-case is 
calculated with the lower end of the cost estimates 
using the highest irradiation data out of the locations 
chosen. While the worst case uses the higher end of 
the cost estimates and the worst irradiation data of 
the locations chosen. This was done to establish a 
range of realistic LCOE values. 

The lowest average LCOE is R0.97 and the highest 
R1.55 per kWh, across the different provinces, with 
the lower estimate falling between the Jasper and De 
Aar projects [12][13] and the higher estimate 
exceeding the De Aar project by about 13%. As 
these LCOEs mostly reflect conventional utility-
scale PV systems, if an 11% increase is included for 
agrivoltaic systems these values increase to R1.08 
and R1.72 per kWh respectively. 

Figure 5. Estimated LCOE rates for provinces in 
South Africa. 

3.4. ROI and payback periods 

3.4.1. Tariff rates and cost of electricity 
Unfortunately, there is very little information on 
export tariffs for most provinces. The one exception 
is the Western Cape Province, which has almost the 
same number of entries as all the other provinces 
combined. As shown in Figure 6 a few of the 

provinces only had a single entry. The average was 
found to be R0.89/kWh and R1.01/kWh for the high 
and low seasons respectively. 

Figure 6. Tariff export rates for each province in 
South Africa. 

When it comes to import tariffs there is a wide range 
across each municipality. For simplicity the analyses 
considered an average commercial import tariff of 
R1.33/kWh and an agriculture import price of 
R1.88/kWh based on the Eskom 2020/21 pricing 
sheet [18]. 

3.4.2. ROI and payback period calculation 
Assuming the system will have a lifetime of 30 years 
and that there will be no major changes to tariff 
structure for export tariffs and that import tariffs will 
grow at a rate of 7% per year based on averaged 
historical data from 2017 to 2021, and without 
considering the discount rate or inflation, this gives 
payback periods of 5 and 13 years for import values 
of R1.33/kWh and R1.88/kWh respectively, and 
ROI values of 244% and 616% respectively. This 
assumes all the electricity generated by the 
agrivoltaic systems are used on site without any 
electricity being fed back into the grid.  
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Assuming all the electricity is exported to the grid 
with a municipality compensation of R0.89/kWh 
and R1.01/kWh (averages for low and high seasons 
respectively), which increases at the same rate as the 
import rates, payback periods of 10 to 21 years and 
ROI values of 147% to 308% are obtained. This 
assumes that all electricity is exported and sold back 
to the municipality, and none is used on site. 

4. Conclusion

Techno-economic analyses have been undertaken on 
agrivoltaic systems in South Africa using the LCOE 
metric. 

Based on the calculations, it is estimated that 
agrivoltaic systems will cost between R38.12 and 
R54.97 per Watt installed, and LCOE values are in 
the range of R1.08 to R1.72 per generated kWh.  

These values will result in payback periods of 5 to 
13 years and have ROIs of 244% to 616% if all the 
electricity is used as a substitute to electricity from 
the grid, or alternatively payback periods of 10 to 21 
years and ROIs of 147% to 308% if all electricity is 
exported back to the grid at average municipal 
export rates. 

While these estimates may be useful for estimating 
the viability and costs of installations in a broader 
sense it does not consider each individual location, 
climate, and municipal rate for the area. Installations 
across the country may therefore deviate 
substantially from the average value range used in 
cases of low irradiation or possibly poor/good 
municipal export/import rates. What is more, the 
project cost breakdown is not based on average 
projects costs for parts such as racking. 

Future research could include better import tariff 
data for provinces besides the Western Cape 
Province, as well as more accurate cost/unit 
breakdowns of the racking system as a function of 
other parameters such as height. Multiple 
calculations could also be run per location and 
municipality, and then averaged to better represent 
the values for each location’s tariff system and 
irradiance. 
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Abstract: This paper focuses on modelling the influence that

the reflected light spectrum has on the rear side of a bifacial

PV module. The front and rear-facing spectrums as well as

current-voltage (I-V) curves for the front and rear side are mea-

sured for a bifacial PVmodule on two different surfaces (white

gravel and grass). The five parameters of a single diode model

are then extracted from the measured I-V curves and two new

factors are proposed that can be used with the conventional

way of modelling the rear side to improve yield forecasting.

The results demonstrate that the photocurrent (Iph) is the most

influenced factor with varying reflected spectrums. Notably,

on white gravel and grass surfaces, there is an improvement

in modelling the Iph parameter by 61.7% and 87.4%, respec-

tively, compared to conventional methods. These results con-

tribute significantly to the accurate modelling of the rear side

of bifacial PV modules.

Keywords: Bifacial technology; rear-side modelling; reflected

light spectrum; spectral response

1 Introduction

Over the last few years, bifacial photovoltaic (PV) modules

have had a remarkable growth in the solar industry, due to the

fact that the rear side can contribute 25% of the total power.

It is predicted that the technology will account for 17% of the

global PV module market in 2024 [1]. Therefore, with such a

huge potential of the technology in the near future, accurately

forecasting the yield is important for system balancing, but also

to reduce the investment risk.

Plenty of research has been done on predicting the power out-

put of monofacial PV modules using analytical and numeri-

cal approaches [2, 3, 4, 5]. These models predict the front-

side power of a PV module accurately and can also be utilized

for bifacial PV modelling. However, with inadequate research

done on the rear side modelling, it is still difficult to accurately

predict the total power contribution of a bifacial PV module.

The authors in [6, 7] have recently carried out experiments

on various surfaces and modelled the bifacial PV module as

a double- or single-diode model connected in parallel. To ac-

count for the power contribution from the rear side of the mod-

ule, they multiply the rear irradiance by the bifaciality factor

provided in the module datasheet. The bifaciality factor intro-

duces inaccuracies since the datasheet does not provide a fixed

value but rather a range. To predict the reflected spectrum, the

author in [8] proposes a bifacial spectral factor (BSF) that com-

bines the front and rear spectral impact. This factor requires the

determination of photon flux density which is a property that

is not easily derived.

Nevertheless, the author in [9] rather came up with a different

electrical model for bifacial PV modules. The model includes

two current sources for the front and rear sides, controlled by

two factors X1 and X2. These factors account for the contribu-

tion of bifaciality and errors caused by the I-V (X1) and irradi-

ance (X2) measurements. The author in [10] proposed an elec-

trical model with additional series resistance to compensate for

the non-linearity of the bifacial PV systems and concluded by

identifying the need for additional research on the effects from

the rear side.

The conventional methods used to predict the power output of

the rear side include employing either a constant albedo value

of 0.2 or using a measured average albedo value for different

surfaces. To calculate the measured albedo, a pyranometer is

placed away from the module, then the irradiance is measured

with the pyranometer facing up and then down. The albedo

value is then calculated from these measurements and the av-

erage is obtained [11].

This research work aims to adapt the already existing analyti-

cal model in literature coupled with two new proposed factors

(irradiance albedo modifier and spectral response modifier) to

better predict the power output of the rear side. The reflected

light spectrum is analysed and factors for two different surfaces

are deduced that can be utilized with the measured rear spec-

trum for enhanced rear-side power prediction. Section 2 and 3

describe the experimental setup and the procedure to calculate

the proposed factors. Section 4 discuss the results obtained

when using the proposed factors compared to other rear-side

modelling techniques, and finally, the work is concluded in

Section 5.
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2 Experimental setup

Figure 1 shows the practical setup of the LONGi Solar LR6-

72BP-350M bifacial module with a module height of 1.3 m

above ground. As it is noticeable, the setup was modified to

have an increased height, tomitigate the effects of bypass diode

activation for lower module heights due to the uneven distri-

bution of reflected light on the rear side, which further makes

the rear side modelling complex and reduces the power pro-

duced from the rear side. To measure the current-voltage (I-

V) curves, a SOLAR I-Ve tracer is used, while for spectrum

measurements, a Spectrafy SolarSIM-G spectrometer, with a

spectral resolution of 1 nm in the range of 280 nm to 4000 nm

is used. The electrical characteristics of the bifacial PV mod-

ule according to the datasheet are shown in Table 1 [12]. The

experiments were carried out on clear sky days and on two dif-

ferent surfaces shown in Fig. 2. The measured reflected light

spectrum of these two surfaces varies significantly and this re-

search delves deeper into this matter.

Fig. 1: Experimental setup

(a) White gravel pavement (b) Grass

Fig. 2: Types of surfaces

Table 1: Bifacial PV module’s datasheet electrical charac-

teristics at STC

Testing condition Front Rear

Maximum power - Pmpp [W ] 350 263

Voltage at maximum power - Vmpp [V ] 39.4 40.2

Current at maximum power - Impp [A] 8.89 6.54

Open circuit voltage - Voc [V ] 47.2 46.8

Short circuit current - Isc [A] 9.39 7.19

Module efficiency [%] 17.8 13.3

Bifaciality ≥ 75%

3 Methodology

A significant emphasis is placed on accurately modelling the

photocurrent, Iph, parameter for the rear side. Even a minor ab-

solute difference between the modelled and measured current

on the rear side yields a substantial percentage of current error

compared to the same absolute difference for the front side. I-

V curves for front-facing up (FFU), rear-facing up (RFU) and

rear-facing down (RFD), as well as the Sun’s spectrum (front-

facing spectrum) and the reflected spectrum (rear-facing spec-

trum), are measured for the two different surfaces. The FFU,

RFU and RFD I-V curve traces were taken while the other side

of the module is covered with a black plastic sheet. Using the

curve_fit function in Python’s scipy.optimize package (version

3.10.4), the five parameters of a single diode model shown in

Equation (1) are extracted.

I = Iph − Is

[
exp

(
V +RsI

a

)
− 1

]
− V +RsI

Rsh
(1)

where Is is the diode saturation current, Rs and Rsh are the

series and shunt resistance respectively, a is the modified ide-

ality factor (a = nNskT
q ), n is the ideality factor, Ns is the

number of cells in series, k = 1.38 × 10−23J/K and q =

1.6×10−19C refer to the Boltzmann’s constant and elementary

electron charge respectively, while T is the cell temperature in

Kelvin.

The parameters extracted for RFU, are then used to model the

I-V curves for RFD. Thus, the only parameter required to accu-

rately model the rear side is Iph, which is greatly influenced by

the reflected spectrum. Two new factors are proposed in this

study and are integrated with the formula shown in Equation

(2), to calculate Iph.

Iph = Iph,STC

(
αG

GSTC

)
[1 + µIsc(T − TSTC)] (2)

where α is a correction factor that can be replaced with an ir-

radiance albedo modifier or spectral response modifier. The

albedo in POA or constant albedo is then used to calculate G

to model the rear irradiance. µIsc is the temperature coeffi-

cient of Isc, T is the module temperature, G is the rear irradi-

ance measured,GSTC = 1000 W/m2 and TSTC = 25 ◦C is

the irradiance and cell temperature at Standard Test Conditions

(STC).

Equation (3) describes an accurate way to calculate the cur-

rent using the spectrum. This equation is used to deduce the

proposed factors.

Iph =

∫ λ1

λ0

SR× Solar Spectrum× A dλ (3)

where SR is the spectral response and A is the area of a cell, so-

lar spectrum is the measured front-facing or rear-facing spec-

trum, λ0, λ1 is the range of wavelength of the spectrometer.
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3.1 POA albedo

The plane of array (POA) albedo is measured in this research

(ρPOA), which differs from the conventional albedo discussed

previously. The total irradiance on a collector surface (G)

consists of direct beam irradiance (Gdirect), diffuse irradiance

(Gdiffuse) and reflected irradiance (Greflected).

G = Gdirect +Gdiffuse +Greflected (4)

The front and rear irradiance (G_f,meas andG_r,meas) at POA

can be determined using Equation (5) and (6), respectively

[13].

G_f,meas = Gdirect [cosβsinΣcos(φS − φC) + sinβcosΣ]

+

[
GdirectC

(
1 + cosΣ

2

)]
(5)

G_r,meas =

[
GdirectC

(
1− cosΣ

2

)]
+Gdirectρ(C + sinβ)(

1 + cosΣ

2

)
(6)

C = 0.095 + 0.04sin

[
360

365
(n− 100)

]
(7)

whereGdirect is the beam insolation at the Earth’s surface, β is

the altitude angle, φS and φC is the solar and collector azimuth

angle respectively, Σ is the module tilt angle, ρ is the ground

reflectance,C is the sky diffuse factor and n is the day number.

The reflected component has a minimum contribution to the

front side, while the beam irradiation is not exposed on the

rear side, thus, these components are neglected in the equa-

tions. For the rear side, the complement of the tilt angle is

used viewing the rear side as if it were the front side.

The albedo at POA, graphically illustrated in Fig. 3, is used

in this research for modelling the rear side and it is calculated

using Equation (8).

ρPOA =
G_r,meas

G_f,meas
(8)

Direct
irradiance

Diffuse
irradianceReflected

irradiance
Ground surface

Plane of array (POA)

Fig. 3: Measuring albedo at POA

3.2 Irradiance albedo modifier

The irradiance albedo modifier is derived by scaling the front-

facing spectrum with the reference SR of the cell technology.

The reference SR is the scaled SR such that, Iph,calc using

Equation (3) is equal to the Isc,meas for FFU. The irradiance

albedo modifier can be calculated as follows:

1. Calculate the current (Iph,calc) using Equation (3) with

the measured rear-facing spectrum and reference SR.

Compare the current with the measured current (Isc,meas)

for RFD.

2. Scale the reference SR until the error between Iph,calc and

Isc,meas is at a minimum. When the error is achieved, this

scaled SR is what will be used for the rest of the proce-

dure.

3. Note down the measured total rear-facing irradiance.

G_r,meas is equal to the area under the measured rear

spectrum.

4. Using the measured front-facing spectrum, calculate the

current (Iph,calc) using Equation (3) with the scaled SR

obtained in step 2. Compare the current with the mea-

sured current (Isc,meas) for RFD.

5. Scale the front-facing spectrum until the error between

Iph,calc and Iph,meas is at a minimum. When the error is

achieved, note down the area under the scaled front-facing

spectrum, which will give the total front-facing irradiance

(G_f,scaled).

6. Determine the irradiance albedo modifier by calculating

the ratio between G_f,scaled and G_r,meas

The above procedure can be repeated for several experiments

and the average value of the irradiance albedo modifier for dif-

ferent surfaces can be calculated using Equation (9).

Irradiance albedo modifier =
G_f,scaled

G_r,meas
(9)

The irradiance albedo modifier accounts for the mismatch in

the modelling, due to the different shapes of front and rear-

facing solar spectrums, that is used as a single irradiance value.

Therefore, this factor corrects the POA albedo discussed in the

previous section, as shown in Equation (10).

Gf,scaled = Irradiance albedo modifier× ρPOA ×Gf,meas

(10)

3.3 Spectral response modifier

The spectral response modifier is derived by scaling the refer-

ence SR of the cell technology with the front-facing and dif-

ferent rear-facing spectrums. To calculate this factor the SR of

the cell technology is scaled because the solar spectrum is mea-

sured and the area of a cell is constant. The spectral response

modifier can be calculated as follows:
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1. Calculate the current (Iph,calc) using Equation (3) with

front-facing spectrum and reference SR. Compare the cur-

rent with the measured current (Isc,meas) for RFU.

2. Scale the reference SR until the error between Iph,calc and

Isc,meas is at a minimum. When the error is achieved,

note the scaling factor (kRFU ), by which the reference

SR was scaled. This can be mathematically represented

as shown in Equation (11).

Isc,RFU =

∫ λ1

λ0

kRFUSRref×Solar Spectrumfront×A dλ

(11)

3. Repeat steps 1 and 2, for RFD on different surfaces with

respective measured rear-facing spectrum. Note the scal-

ing factors for different surfaces (kRFD1, kRFD2). This

can be mathematically represented as shown in Equation

(12)

Isc,RFD =

∫ λ1

λ0

kRFDSRref×Solar Spectrumrear×A dλ

(12)

The above procedure can be repeated for several experiments

and an average value of the scaling factors (kavg) can be ob-

tained. The spectral response modifier can now be calculated

for different surfaces as shown in Equation (13). This factor

considers the spectral information of the irradiance and SR of

the cell technology.

Spectral response modifier(i) =
kRFD,avg(i)

kRFU,avg
(13)

where i denotes the different number of surfaces. This spectral

response modifier can then be used in Equation (2) to calculate

the contribution of Iph from the rear side.

3.4 Accuracy indicators

For this paper, about 20 experiments were carried out on two

different surfaces. The current error between the measured and

modelled, root mean square error (RMSE) and mean bias er-

ror (MBE) shown in Equation (14), (15) and (16) respectively,

are the metrics used to validate and compare different ways

of modelling the contribution of Iph from the rear side. The

RMSE value provides insight into the accuracy of the mea-

sured data when compared to the corresponding predicted data,

while MBE provides information regarding under- or overes-

timation of the predicted data when compared to the measured

data.

Error(%) =
Imod − Imeas

Imeas
× 100 (14)

RMSE =

√∑N
i=1(pi − oi)2

N
(15)

MBE =

∑N
i=1(pi − oi)

N
(16)

where pi and oi are the predicted and measured values, respec-

tively, N is the data set size.

4 Results and discussion

In this section, the results obtained from modelling the con-

tribution of Iph for the rear side, with different α factors used

in Equation (2) are discussed. Fig. 4 shows an internationally

recognized spectrum at STC according to the American Soci-

ety for Testing and Materials (ASTM G-173) and the Interna-

tional Electrotechnical Commission (IEC 60904-03) [14]. The

ASTM G-173 and IEC 60904-03 spectrums are almost simi-

lar, and therefore the ASTM G-173 spectrum is compared to

a spectrum measured by the spectrometer used for the exper-

iments. It can be seen that there is a close resemblance be-

tween the measured spectrum and the ASTM spectrum. The

slight difference can be explained because the measured spec-

trum has a total irradiance of 1003 W/m2 compared to STC.

Therefore, all the results rely on spectrum measurements that

conform to international standards.

4.1 POA albedo

Figure 5 shows the varying albedo measured at POA for dif-

ferent surfaces. POA albedo was calculated using Equation

(8). The average value of the measured albedo is then used in

Equation (2) to model Iph for the rear side. The average albedo

on white gravel and grass was 0.154 and 0.137 respectively.

4.2 Irradiance albedo modifier

Figure 6 shows the scaled front-facing spectrum so that when

the SR is overlaid on the scaled front-facing spectrum, Iph,calc
is equal to the measured current for RFD on two different sur-

faces at a specific time stamp. The irradiance albedo modi-

fier of a surface is then calculated using Equation (9). Fig. 7

shows the variation of the irradiance albedo modifier on dif-

ferent surfaces. The average irradiance albedo modifier on a

white gravel surface is 0.9976, while on grass it is 1.0732.

These irradiance albedo modifiers are then used in Equation

(2) to model the contribution of Iph from the rear side. As ex-
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Fig. 4: Meas vs ASTM spectrum
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Fig. 5: Measured POA albedo vs constant albedo

(a) White gravel pavement

(b) Grass

Fig. 6: Illustration of irradiance albedo modifier calcula-

tion utilizing scaled front-facing and rear-facing spectrum

for different surfaces.

Fig. 7: Irradiance albedo modifier over different surfaces

pected, the ratio ofG_f,scaled andG_r,meas for thewhite gravel

surface is closer to 1 than the grass surface, and this is due to the

reflected spectrum of the white gravel surface having a shape

similar to the front-facing spectrum, thus not much irradiance

correction is done by the irradiance albedo modifier, while the

reflected spectrum of the grass surface is much more a red-

shifted spectrum and therefore the irradiance albedo modifier

accounts for the mismatch in irradiance, due to differences in

the shape of the spectrum.

4.3 Spectral response modifier

Figure 8 shows the variation in the scaling factors (kRFU and

kRFD) for RFU and RFD on different surfaces, respectively.

The average values of these scaling factors are summarized in

Table 2. The spectral response modifier for the two different

surfaces is then calculated using Equation (17) and (18). These

spectral response modifiers are then used in Equation (2) to

calculate the contribution of Iph from the rear side.

Spectral response modifier(White gravel) =
0.745

0.7918
= 0.9409

(17)

Spectral response modifier(Grass) =
0.8348

0.7918
= 1.0543 (18)

4.4 Comparison of different α values

Various ways of modelling the rear side’s current contribution

are summarized in Table 3. For each method, the current error,

Table 2: Average value for scaling factor k

Experiment k value

RFU 0.7918

RFD (White gravel) 0.745

RFD (Grass) 0.8348
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Fig. 8: Scaling factors (k) for different experiments

RMSE and MBE are calculated to validate the model’s accu-

racy. Fig. 9 shows the current error between the modelled

and measured Isc. A positive current error and MBE mean that

the model overestimates the measured current, while a nega-

tive error indicates an underestimation. To quantify the errors,

Table 4 shows the RMSE and MBE values.

It is evident that using a constant albedo of 0.2 can lead to

higher inaccuracies of modelling the rear side current. While

in Fig. 9 it can be observed that when the current is modelled

using the irradiance albedo modifier and the measured rear ir-

radiance, the current error for the white gravel surface is almost

similar. This is because both the scaled front and rear-facing

spectrum look similar, thus not much scaling is required when

calculating the irradiance albedo modifier. However, for the

grass surface, since the front and rear-facing spectrums are dif-

ferent, the irradiance albedomodifier yields an accurate current

prediction than the measured irradiance, because the irradiance

albedo modifier accounts for the difference in the irradiance

due to different shapes of front and rear- facing spectrums.

From the two proposed factors, the spectral response modifier

gives the most accurate results with RMSE of 0.0339 A and

0.0112 A for white gravel and grass surfaces, respectively. It

also overestimates the current by only 0.0201 A and 0.0021

A on white gravel and grass surfaces, respectively. Neglect-

ing the shape of the reflected spectrum is equivalent to using

the measured rear irradiance when modelling the current con-

tribution from the rear side. This can be observed in Fig. 6b,

where the two spectrums have different shapes but the same ir-

radiance values. However, the spectral response modifier con-

siders the spectral information of the spectrum, and the results

show that considering the spectrum using the proposed spec-

tral response modifier can improve the modelling accuracy by

61.7% and 87.4% on white gravel and grass surfaces, respec-

tively. There is a significant improvement in the model even

for a slightly different reflected spectrum from the front-facing

spectrum (white gravel surface). These values are significantly

Table 3: Different ways of modelling the rear-side current

Iph

Method α factor value

Spectral response modifier
0.9409 (White gravel)

1.0543 (Grass)

Irradiance albedo modifier
0.9976 (White gravel)

1.0732 (Grass)

POA albedo
0.154 (White gravel)

0.137 (Grass)

Constant albedo 0.2

Measured rear irradiance 1

Table 4: RMSE and MBE for different ways of modelling

rear-side current Iph

White gravel Grass

RMSE MBE RMSE MBE

Method [A] [A] [A] [A]

Spectral response 0.0339 0.0201 0.0112 0.0021
modifier

Irradiance albedo 0.0862 0.0819 0.0312 -0.0303
modifier

POA albedo 0.0827 0.0266 0.0327 0.0147

Constant albedo 0.2556 -0.2455 0.1207 -0.1169

Measured rear 0.0886 0.0845 0.0890 -0.0883
irradiance

lower than the other factors used to model the rear side current.

The spectral response modifier shows the significance of tak-

ing the spectral information into account and the effect it has

on the rear side modelling of a bifacial PV module.

5 Conclusion

In this paper, the methodology with practical experiments is

presented to model the current contribution of the rear side.

Two new factors (spectral response modifier and irradiance

albedo modifier) are introduced and compared with other fac-

tors widely used for modeling Iph. Based on the analysis and

findings presented in the paper, the following conclusions can

be drawn.

The irradiance albedo modifier is calculated by scaling the

front-facing spectrum, while the spectral response modifier is

calculated by scaling the SR of the cell technology. These fac-

tors are then coupled with a well-established equation in the
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(a) White gravel pavement

(b) Grass

Fig. 9: Current error of various α factors on different sur-

faces.

literature that can model the Iph parameter of a single diode

model. Along with the proposed factors, three other methods

(POA albedo, constant albedo, and measured rear irradiance)

are used to model the current contribution from the rear side.

The results show that the spectral response modifier produces

the most accurate way to model the Iph parameter with an im-

provement of 61.7% and 87.4% on white gravel and grass sur-

faces, respectively, compared to the other methods used. The

primary emphasis resides in the spectral responsemodifier pro-

ducing accurate results over using measured irradiance value.

This suggests that the shape of the reflected spectrum does in-

fluence the rear side modelling of a bifacial PV module. The

proposed spectral response modifier does take into account the

shape of the reflected spectrum, as compared to the measured

rear irradiance used, which does not take into consideration the

shape of the spectrum.

However, more experiments need to be conducted on different

surfaces that exhibit colors (except white and black surfaces).

This would ensure that the reflected spectrum is much different

than the front-facing spectrum.
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Abstract 
Bifacial photovoltaic (bPV) modules are designed to 
absorb light on both the front and rear surfaces to 

generate electricity, and as a result bPV modules 

have a better yield and can improve the Levelized 

Cost of Electricity (LCOE) of photovoltaic (PV) 

installations. The factor by which the output of the 

bifacial  module is increased compared with a 

monofacial PV module is called the rear irradiance 

driven Power Gain. The two surfaces of a bPV 

module differ in collection efficiency and this 

difference depends on the cell technology used in the 

module. The electrical parameters of each surface of 
a bPV module are measured at standard testing 

conditions (STC) as explained in the technical 

standard IEC TS 60904-1-2: 2019. These parameters 

included Maximum Power (𝑃𝑚𝑎𝑥), Short-circuit

Current (𝐼𝑆𝐶) Open circuit voltage (𝑉𝑂𝐶 ) and the

ratios of these parameters give the bifaciality 

coefficients (𝜑𝑃𝑚𝑎𝑥
, 𝜑𝐼𝑆𝐶

, 𝜑𝑉𝑂𝐶
) of a bPV module.

These measurements are made indoors using an 

indoor solar simulator and outdoors using a portable 

I-V curve tracer. The results are comparable given

the associated measurement uncertainty of each

method. This paper outlines the advantages and

disadvantages of each method and critically

examines the limits and challenge of each method.

Keywords: Bifacial photovoltaic module; bifacial 

module characterisation; rear irradiance driven 

power gain yield 

1. Introduction

Photovoltaic (PV) technology converts sunlight 

directly into electricity using the photovoltaic effect, 

and produces no harmful by-products during 

operation. The electricity in PV systems is generated 

by absorption of light by PV cells, which is “a 

specialised semiconductor diode with a large barrier 
layer exposed to light” [1]–[4]. The junction 

separating the p-type and n-type layers of the diode 

is much larger compared with the thickness of the n- 

and p-type layers, and the first (emitter) layer in the 

path of light is thinner than the second (base) layer 

to allow more light to reach the base layer. The type 

of the base layer in a PV cell (whether n-type or p-

type) is used to indicate if a cell is n-type or p-type 

[2]. Electrical contacts are printed on the front and 

rear surfaces of PV cells to conduct the generated 

current to power external circuits. Fig. 1 is a 

simplified diagram comparing the structures of a 
standard (monofacial) p-type PV cell and a bifacial 

PV cell [5]. In the monofacial PV cell the rear 

electric contact covers the entire back surface of the 

cell, while in the bifacial PV cell the rear electrical 

contact is exactly like the front surface contact. The 

front electric contacts are in a grid pattern to allow 

light to enter the cell [5]. The anti-reflection coating 

(ARC) reduces the amount of light reflected at the 

surface of the PV cell. The n-type layer has free 

electrons in the crystal, and in the p-type layer the 

free charge carriers are holes due to doping with 
group III elements [3]. The depletion layer forms 

when the electrons and holes recombine to establish 

a region devoid of free charge carriers. The depletion 

layer extends into the n-type and p-type layer and is 

important to the operation of the PV cell due to the 

potential barrier that is established there.[3]  

Fig. 1: A simplified diagram of a standard PV 

(p-type) cell compared to a bifacial PV cell 

[5]. 

The efficiency of PV cells is between 10% and 33% 
depending on cell technology [3]. PV technology 

researchers always seek ways to improve efficiency 

of PV cells, and one way of making high efficiency 

cells is by making bifacial PV cells that absorb light 

on both surfaces by having grid-type electric 

contacts on the rear surfaces like on the front 

surface[6] - [7]. There exists different architectures 

of bifacial PV cells. The p-type cell architectures 

are: passivated emitter rear contact (PERC), 

passivated emitter rear locally-diffused (PERL), 

double-sided buried contact solar cell (DSBCSC) 
and the n-type solar cells structures are: passivated 

emitter rear totally diffused (PERT), heterojunction 

with intrinsic thin layer (HIT), interdigitated back 

contact (IBC) and tunnel oxidated passivated contact 
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(TOPCon). The two bifacial PV (bPV) cell surfaces 

generate current using the same junction. 

In a bifacial module the  two surfaces do not 

generate current with the same efficiency due to the 

difference in dopant concentration of the emitter and 

base layers, their different lengths from the depletion 

zone and the possibility the different application of 

the anti-reflecting coating on the front and rear 

surfaces [8].  

The bifaciality coefficient is generally higher in n-

type cells than in p-type cells. For PERC and 

DSBCSC the bifaciality coefficient is in the range 

(70 – 80%), for PERL (80 – 85%), and for n-type 
cells IBC (70 – 80%), PERT and TOPCon (80 – 

85%), and HIT (95 – 100%) [7]. 

Fig. 2 is an equivalent circuit diagram for a bifacial 

PV cell: the front surface and rear surface (indicated 

by subscripts f and r respectively) are connected in 

parallel.  Each surface of a bifacial cell generates 

current proportional to the incident irradiation using 

the same junction. 

Fig. 2: Equivalent circuit diagram for a bifacial 

PV cell [10]. 

The short-circuit current (𝐼𝑆𝐶) and open-circuit

voltage (𝑉𝑂𝐶 ) of bifacial modules are given by

equation (1) and equation (2) [7]: 

𝐼𝑆𝐶 = 𝐼𝑆𝐶,𝑟 + 𝐼𝑆𝐶,𝑓  (1) 

𝑉𝑂𝐶 = 𝑉𝑂𝐶,𝑓 +

𝑉𝑂𝐶,𝑟 − 𝑉𝑂𝐶,𝑓ln (
𝐼𝑆𝐶,𝑓 + 𝐼𝑆𝐶,𝑟

𝐼𝑆𝐶,𝑓
)

ln (
𝐼𝑆𝐶,𝑟

𝐼𝑆𝐶,𝑓
⁄ )

 (2) 

PV cells typically have open-circuit voltage of about 

0.5 V, to obtain a desired electrical output multiple 

PV cells can be connected either in series or parallel. 

Cells connected in series will sum the voltages of all 

the cells, but the current of the connected cells will 

equal current of a cell with the lowest current. For 

cells in parallel the currents will add but the total 

voltage will equal voltage of a single cell.  

The ratios of the electrical parameters of the rear 

surface to the front surface of bifacial modules are 

called bifaciality coefficients (𝜑). The bifaciality 

coefficients of 𝐼𝑆𝐶 (𝜑𝐼𝑆𝐶
), 𝑉𝑂𝐶  (𝜑𝑉𝑂𝐶

) and of

maximum power 𝑃𝑚𝑎𝑥 (𝜑𝑃𝑚𝑎𝑥
) are given by

equations (3) – (5), respectively: 

𝜑𝐼𝑆𝐶
(%) =

𝐼𝑆𝐶,𝑟

𝐼𝑆𝐶,𝑓

× 100  (3) 

𝜑𝑃𝑚𝑎𝑥
(%) =

𝑃𝑚𝑎𝑥,𝑟

𝑃𝑚𝑎𝑥,𝑓

× 100  (4) 

𝜑𝑉𝑂𝐶
(%) =

𝑉𝑂𝐶,𝑟

𝑉𝑂𝐶,𝑓

× 100  (5) 

The bifaciality coefficient 𝜑 of a bifacial PV module 

is then given by the minimum of the power and 

current coefficients, equation (6): 

𝜑 = min{𝜑𝐼𝑆𝐶
, 𝜑𝑃𝑚𝑎𝑥

}  (6) 

The standardised method for characterization of 

bPV is covered in the International Electrochemical 

Commission (IEC) TS 60904-1-2 (Edition 1.0 2019-

01) based on the work of previous research  [9]–[15].
The measurement of the Current-Voltage (IV)

characteristic curve of bPV modules can be

performed indoors in two ways, using a single light

source to characterize each face individually or with

two light sources, one illuminating each surface

simultaneously. In both cases characterization is

done at standard testing conditions (STC) of

irradiance intensity of 1000 W·m-2, module

temperature of 25 °C and air mass of 1.5. During

characterization with a single light source, the

irradiance on the second surface not being
characterised does not exceed 3 W·m-2. The setup

for double side illumination is more complex and

expensive. The IEC TS 60904-1-2 also allows for

the measurement of the IV curves outdoors in

natural sunlight [7].  The power rating of bifacial PV

modules is based  on the performance of the front

surface only. The contribution of the rear surface to

the total electrical power generation for each unit of

rear irradiance is expressed by a parameter called the

rear irradiance driven power gain yield, 𝐵𝑖𝐹𝑖.

2. Methodology

The aim of this study was to characterize bifacial PV 

modules by measuring the electrical performance at 

different irradiance levels. The measured electrical 

parameters are then used to determine bifaciality 

coefficients. The BiFi of one bifacial module is also 

determined. The modules used in this experiment are 

LONGi bifacial modules (LR4-72H BD-430M), p-

type monocrystalline PERC 430 W peak modules. 

The specification of the module is given in Table 1. 
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Table 1: Module specification for the LONGi 

modules used in the experiment. 

LR4-72H BD-

430M 

Pmax(W ± 3%) 430 

Isc(A) 11.09 

Voc(V) 49.6 

Impp(A) 10.44 

Vmpp(V) 41.2 

Efficiency (%) 19.2 

Bifaciality: (%) ≥70 

A module was tested by PVinsight, the PV testing 

laboratory based in the Gqeberha and at Fraunhofer-

ISE in Freiburg, Germany. The purpose of this was 

to use this module as a reference module for the solar 

simulator calibration. 

2.1. Procedure – Measurements at Standard 
Test Conditions (STC) 

For the indoor characterization, a full spectrum long 

pulse A+A+A+ LED flasher was used. The rating of 

the solar simulator means that the spectrum (300-

1200 nm) meets Class A+ according to IEC6064-9 

Ed3, with spectral coverage 94% (± 3%) and 
spectral deviation 43% (± 3%). The Long-term 

instability is less than ± 1% and the non-uniformity 

of the light source is less than ± 1%, meeting Class 

A+ according to IEC6064-9 Ed3. The technical 

specifications of the solar simulator can be found in 

[16]. The irradiance range of the simulator is 200 - 

1000 W·m-2  configurable in steps of 200 W·m-2. 

Current software limitations prevent smaller 

irradiance level increments and measurements at 

irradiances above 1000 W·m-2 were not possible at 

the time of the tests.  

The testing procedure for a single surface of a 

bifacial module using a single light source is 

illustrated in Fig. 3. A non-reflective surface and 

baffles are used to ensure that no more than 
3 W·m-2 of stray irradiance reaches the other surface 

not under test. The procedure is repeated on both 

sides of the module. 

Fig. 3: The setup for characterization of a 

bifacial PV module with a single light source. 

The non-reflective surface behind the module 

prevents reflection of stray light to the surface 

not being characterized [19]. a) front surface 

illumination , and b) rear surface illumination 

The MBJ Mobile lab 5.0 simulator is shown in Fig. 

4, with a bifacial module loaded for testing.  In the 

image black foam sheets have been used underneath 

the module to ensure that there is no stray light on 

the surface not under test. The temperature of the 

module is measured using IR sensors mounted 

underneath the module. While the foam is in place 

the temperature of the module cannot be accurately 

measured so the module is temperature stabilised 

prior to test (25°C ± 2°C) and the system 

temperature reading are manually confirmed with a 

temperature sensor. 

For I-V measurements the simulator will flash the 

module, records the measured electrical output, and 
corrects the data to STC measurements, according to 

IEC 60891 [17]. This process is repeated with the 

rear surface, though care must be taken to ensure the 

cabling does not create additional shading. In total, 

four modules were tested in the solar simulator. 

Fig. 4: The solar simulator used for indoor 

characterization of bPV module, with a module 

loaded and ready to be tested. 

The alternative to indoor measurements using a solar 

simulator is to test modules outdoors using an I-V 
curve tracer. A Solmetric PVA-1500V4 analyser was 

used. The modules were mounted on a mobile frame 
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to be able to move to different surfaces and also 

allowed to change the tilt angle. The irradiance is 

measured on the front surface using the Solmetric 

Irradiance sensor, which also measures module 

temperature and tilt angle. The rear irradiance was 
not measured. To ensure no stray incident light, a 

black cloth was laid on a cardboard to form a non-

reflecting cover for the face not being measured. Fig 

5 shows, a) the front and b) rear faces of the bifacial 

module used in the experiment, mounted on the 

frame while taking the measurements. While 

measuring the respective IV curves, the module is 

tilted with irradiance perpendicular to the module 

surface. 

a) b) 
Fig. 5: The setup for outdoor 

charactereization of a) Front surface and b) 

rear surface of a bifacial PV module. 

The PVA-1500V4 was used to record the IV 

characteristic curves, with multiple measurements 

obtained for each part of the experiment. The tilt was 

kept constant throughout the experiment, and the 

measurements were taken in quick succession to 

ensure near constant temperature and irradiance. 

The temperature was measured at the rear surface of 

the module, however, this does present challenges 

when measuring the complete (rear and front) 

module output as the temperature sensors (k-type 

thermocouples) can shade the rear surface cells and 
effect the results. The temperature sensors were 

positioned in ways to minimise this effect on the 

module results. However, in measuring the front side 

the effect of shading is not a concern. Covering of 

the back surface increases the rear surface 

temperature but provided the sensor is correctly 

applied the temperature corrections will account for 

this. 

The procedure in testing standard IEC TS 60904-1-

2 (2019-01)[18], for measuring individual face 

performance was adapted for outdoor testing of the 

bifacial module.  

When testing the rear surface (Fig. 5b) it is important 

to ensure that the shading on rear surface is limited, 

the cabling should be clamped to prevent additional 

shading. In both indoor and outdoor measurements, 

the frame shades the back surface of the module, as 

indicated in Fig. 6. 

Fig. 6: Challenge of module self-shading when 

characterizing the rear surface due to the 

module frame and module cables. 

2.2. Procedure – Determination of Bifaciality 
and Rear Irradiance Power Gain (BiFi) 

The Bifaciality coefficients of the modules are 

calculated using equations (3) – (6) from the 

measurements at STC.  

The procedure for measuring the BiFi is described in 

IEC TS 60904-1-2: multiple low irradiance levels 

𝐺𝑟𝑖
 are used to determine the equivalent irradiance

𝐺𝐸,𝑟, equation (7), and 𝜑 is the bifaciality of the

bifacial PV module.  

𝐺𝐸,𝑟(𝐺𝑟) = 𝐺𝑓 + 𝜑 ∙ 𝐺𝑟  (7) 

The front surface of the bifacial PV module is 

characterized with the equivalent irradiances to 

measure maximum power PMAX. The PMAX is plotted 

as a function of the rear-side irradiance. The 𝐵𝑖𝐹𝑖 is 
the slope of this plot.  

The measurement of the rear irradiance driven 

power gain yield, 𝐵𝑖𝐹𝑖, with a single light source is 

determined using the procedure outlined in IEC TS 

60904-1-2 and requires equivalent irradiance levels 

𝐺𝐸 > 1000 𝑊 · 𝑚−2. The equivalent irradiance 𝐺𝐸

is calculated with equation (7), and the maximum 

power output at equivalent irradiance is measured on 

the front surface. These measurements were made 

by Fraunhofer and serve as a reference to the 

measurements made in this study. The solar 
simulator used in this study is limited in the 

irradiance levels that can be tested above 

1000 𝑊 · 𝑚−2. 

The power output for rear surface 𝑃𝑟 measured at

low irradiances can be added to the Power output of 
the front surface at STC to determine the Power 

output of the entire module, see equation (8). This is 

a simplified approach that can in implemented when 

there are limitations in the irradiance levels available 

to test modules.  

𝑃𝑟+𝑓𝑆𝑇𝐶
= 𝑃𝑓,𝑆𝑇𝐶 + 𝑃𝑟,100  (8) 
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Now 𝑃𝑟+𝑓𝑆𝑇𝐶
 is plotted against rear irradiance to

determine 𝐵𝑖𝐹𝑖. 

The results for bifacial characterization using 

procedures given in IEC TS 60904-1-2 (2019) done 
at Fraunhofer are included to compare with the 

results of the adapted procedure for the 

determination of 𝐵𝑖𝐹𝑖.  

3. Results and Discussion
3.1. Single surface characterization

The results for the indoor and outdoor 

characterization of a bifacial PV module at STC are 
recorded in Table 2. The results are comparable 

when the measurement uncertainties are considered. 

Table 2: The measured results for the 

characterization of the front and rear surfaces 

of a bifacial PV module. 

Indoor Outdoor 

Front Front 
Measured 

Value 

± Uncertai

nty 

Measured 

Value

± Uncertaint

y

𝑃𝑚𝑎𝑥(𝑊) 430.6 ± 3.0% 428.29 ± 5.45% 

𝐼𝑠𝑐(𝐴) 11.16 ± 2.5 % 11.20 ± 2.5% 

𝑉𝑜𝑐(𝑉) 49.15 ± 0.7% 49.87 ± 1.35% 

𝐼𝑚𝑝𝑝(𝐴) 10.57 ± 2.5 % 10.60 ± 2.5% 

𝑉𝑚𝑝𝑝(𝑉) 40.75 ± 0.8% 40.41 ± 1.35% 

Fig. 7 shows the IV curves of the front surface of the 

modules for the indoor and outdoor measurements. 

Fig. 7: The current-voltage measurements of 

the front face of the bifacial module measured 

indoor and outdoor corrected to STC. 

The most notable deviation is the variation between 

the 𝑉𝑂𝐶  measurements. As 𝑉𝑂𝐶  is highly temperature 

dependant this could be attributed to the uncertainty 

in temperature measurements in both indoor and 

outdoor measurements.   

The rear surface IV curve for irradiances from 

200  to 1000 W·m-2 are shown in Fig. 8.  

Fig. 8: The rear surface IV curve measured 

indoors at irradiances from 200 - 1000 W·m-2. 

The bump in the curves is attributed to the shading 

from the frame and occurs at the same voltage on the 

curves at the different irradiances. At lower 

irradiances the effect of the rear surface shading is 
less significant, indicating that in normal operation 

the losses due to frame shading will be small.  

3.2. Determination of Bifaciality 

The Bifaciality coefficients are calculated using the 

indoor measurements and the equations (3) – (5). 

The results are given in Table 3.  The average of 

multiple modules of the same type is taken as this is 

the recommendation of IEC TS 60904-1-2. This 
average is compared with the result reported by 

Fraunhofer for a single module. The results are 

comparable.  NMU (Nelson Mandela University) 

determined a bifaciality of 73.6%, and 74.1% at 

Fraunhofer ISE, which is within the expected range 

for PERC modules [7]. 

Table 3: The calculated Bifaciality coeffecients 

for a sample of identical modules measured at 

STC compared with the same module type 

measured at Fraunhofer. 

MODULE 
MEAN 

FRAUN- 

HOFER 1 2 3 4 

𝜑𝐼𝑆𝐶
75.1% 75.9% 77.3% 75.6% 76.0% 74.8% 

𝜑𝑃𝑚𝑎𝑥
73.1% 73.6% 74.3% 73.4% 73.6% 74.1% 

𝜑𝑉𝑂𝐶
99.0% 99.0% 99.1% 98.9% 99.0% 98.9% 

𝜑 73.1% 73.6% 74.3% 73.4% 73.6% 74.1% 

To determine the rear irradiance driven power gain 

yield, 𝐵𝑖𝐹𝑖, using the standard procedure, the results 

measured at Fraunhofer were used with low rear 
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irradiance levels of 100 W·m-2 and 200 W·m-2 and 

bifaciality coefficient of 74.1% are input into 

equation (7), (with equivalent irradiances of 

1000 W·m-2, 1078 W·m-2 and 1148 W·m-2 

respectively). The irradiance levels used to 
determine the BiFi for the calculated bifaciality 

coefficient are given in Table 4. The measured 

maximum power at these equivalent irradiances is 

then plotted against the rear irradiances in Fig. 9. 

The gradient equals the 𝐵𝑖𝐹𝑖 of the module, which 

is 0.314 as summarised in Table 5. 

Table 4:  The calculated Pmax for the effective 

irradiance measurements for a sample measured 

at NMU. 

φ [%] 
Gr 

[W·m-2] 

GE 

[W·m-2] 
𝑷𝒓

[W] 

PMAX,STC

+ 

Pr[W] 

74.1 

0 1000 433.3 

100 1074.1 

200 1148.2 52.4 485.70 

400 1296.4 116.3 549.60 

With the adapted procedure, the rear surface was 

measured at irradiance levels Gr of  200 W·m-2 and

400 W·m-2. By adding the maximum power output of 

the front face PSTC,f to the maximum power measured

on the rear surface Pr at Gr (equation (8)), the effective

power output can be determined with the front surface 

receiving 1000 W·m-2 and the rear surface 

200 W·m-2 or 400 W·m-2. Table 4 indicates the 

calculation of this effective power output. These 

measurements are plotted on same axis with 

measurements of the equivalent power of front 

surface. The two sets of measurements are plotted in 

Fig. 9.  The slope of the graph equals the BiFi of the 

module  is 0.29. 

Fig. 9: PMAX  plotted  as a function of rear 

irradiance in order to calculate the rear 

irradiance-driven power gain yield, 𝑩𝒊𝑭𝒊, 
measured on bifacial modules at NMU and at 

Fraunhofer ISE. 

The 𝐵𝑖𝐹𝑖 calculated with the non-standard 

procedure is 10% less than the 𝐵𝑖𝐹𝑖 measured at 

Fraunhofer ISE, which has an uncertainty of 21%. 

Conclusion 

The front and rear surface measured power output 

can be measured individually by isolating the 

surface under test. This process allows the bifaciality 

coefficients to be measured and compared with those 

stated by the manufacturer. This process is time 
consuming and can only be done on a sample of 

modules. 

The measuring of the electrical power output of 

bifacial modules requires a standardised procedure 
with a controlled test setup that can provide results 

that are meaningful to the real-world operation of the 

module. The challenges encountered when 

determining the rear irradiance driven power gain 

yield parameter 𝐵𝑖𝐹𝑖 using the published procedure 

inspired the development of an adapted procedure 

using the available equipment to calculate the 𝐵𝑖𝐹𝑖. 
The 𝐵𝑖𝐹𝑖 was determined for the same module at 

Fraunhofer using the published procedure and at 

NMU using an adapted procedure. The 𝐵𝑖𝐹𝑖 
determined with the adapted procedure is within one 

standard deviation of the value determined with the 

standard procedure, which shows compatibility of 

the two methods. The BiFi gives an indication of 

how much electrical power will be generated by the 

rear surface for each unt of irradiance absorbed by 

the rear surface when a bifacial module is receiving 

light in both surfaces simultaneously. 

It is possible to measure modules in indoor or 

outdoor tests and get similar results which are within 

measurement error. The measurements uncertainties 

for outdoor measurements due to the variable 

conditions outdoor are larger than indoor 

measurements. The method used to determine the 

𝐵𝑖𝐹𝑖 is an acceptable compromise when it is not 

possible to use the high irradiance levels for the 

equivalent irradiance method, or in the absence of a 

dual light source for bifacial characterization. 
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Abstract: Post-harvesting losses are predominant in developing 
countries due to inadequate food preservation methods. Open 
sun drying usually used by small-scale subsistence farmers in the 
developing world is inefficient since the quality of the product is 
reduced due to under or over-drying in the sun. Additionally, 
environmental factors such as rain, wind, and dust have a 
negative impact on the quality of the dried products. To cater to 
the drawbacks of open sun drying, an indirect solar dryer is 
designed and experimentally evaluated for drying bananas. The 
dryer is evaluated under two experimental conditions. The first 
drying condition involves drying bananas during two 8 h periods 
of good solar radiation on two consecutive days. Secondly, the 
solar dryer is tested for a continuous 24 h period to study the 
overnight characteristics of the dryer. To evaluate the thermal 
characteristics, the thermal profiles in six drying trays are 
measured with K-type thermocouples during the drying process. 
The six trays are in three levels (top, middle, and bottom), and 
there are two trays per level (left and right). Each tray has two 
thermocouples making a total of twelve measurement positions 
in the dryer. The moisture ratio is also used to evaluate the 
thermal characteristics in the drying chamber. The maximum 
temperatures attained for both days in the 8 h sunny period tests 
in the top trays are around 48 oC. For the 24 h test, the maximum 
temperature at the top trays is around 50 oC. The drying process 
continues even when the drying tray temperatures drop 
drastically overnight to minimum values between 6-8 oC for the 
24 h test. The final average moisture ratios for the 16 h and 24 h 
tests are comparable showing values of around 26 % and 32 %, 
respectively. This indicates that the solar drying process can be 
continuously done for 24 hrs without much moisture rebuild. A 
storage system can effectively improve the drying process 
overnight. 

Keywords: Bananas; Indirect solar dryer; Thermal 
characteristics 

1. Introduction

 Food security in developing countries is a very important issue 
that requires a sustainable food supply chain to alleviate hunger 
[1]. Food shortages are made worse in developing countries due 
to high birth rates, poor food preservation techniques, and natural 
disasters such as floods and droughts [2-3].  Close to 1.3 billion 
tonnes of food are lost annually as reported by the Food and 
Agriculture Organization (FAO) [4]. One effective way to 
reduce post-harvesting losses is the drying of food which is a 
generally energy-intensive process. The simplest method used in 
the developing world is open sun drying which has several 
disadvantages. Disadvantages include non-controlled drying 
resulting in under and over-drying and food contamination due 
to dust, rain,  wind and over-exposure to direct solar radiation 
[5]. Open sun drying is also a labour-intensive process requiring 
constant monitoring in a very large open area for large amounts 
of food, and food tends to reabsorb moisture if it is left for a long 
period thus losing its colouring and nutritional value. 

 A method of addressing the shortcomings of open sun drying is 
solar drying using both direct and indirect modes. Different types 
of solar dryers have been developed in recent years as reported 
in the recent comprehensive review papers on solar dryers[6-9]. 
Solar dryers have been used in recent years to dry fruits and 
vegetables [10], sugarcane [11], and meat [12].  Fruits are grown 
widely by commercial or subsistence farmers in Africa and Asia. 
Fruits also grow naturally in these regions, and solar dryers have 
been used to dry grapes [13], apples [14], bananas [15], mangoes 
[16] and pineapples [17] to extend their shelf-life.  Although
some recent work has been on the solar drying of bananas [18-
21], there is still room for improvements to optimize the solar
drying process. The aim of this paper is thus to evaluate a novel
indirect solar dryer for drying banana slices. The novel aspects
investigated include having DC fans attached at the top of the
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collector to reduce the pickup of dust and measuring the thermal 
profiles in 12 different locations inside the drying chamber to 
fully understand the thermal behaviour during solar drying. 
Experimental results for two tests are presented in this paper. The 
first test involves drying the bananas for two consecutive days of 
good solar radiation conditions for periods of 8 h. The second 
test involves continuously drying bananas for a 24 h period (9 
am on day 1 to 9 am on day 2). The results obtained will be useful 
for improving the solar drying of bananas.      

2. Experimental setup and method

Isometric and cross-sectional schematics of the novel solar dryer 
are shown in Figs. 1 and 2.  The dryer is a scaled-up experimental 
version of the one reported recently by Tegenaw et al. [22]. The 
width and length of the collector are 1.164 m and 1.740 m, 
respectively, and the highest point of the ground to the collector 
is around  3 m.  

Fig. 1. An isometric view of the novel solar dryer 

A stainless-steel absorber plate absorbs solar radiation incident 
on the collector, and this solar thermal energy is extracted using 
six computer CPU cooling DC fans that are connected to the inlet 
of the collector. The hot air from the outlet of the collector heats 
the drying chamber trays. A DC power supply or a solar panel 
with a battery and a charge controller can be used to power the 
fans. The DC power supply is used in the reported experiments 
to power the fans since the charge controller has a thermal switch 
that shuts off the fans after 4 hrs of continuous running.  A DC 
supply supplies a maximum current of around 0.4 A which 

corresponds to an average airflow velocity of around 0.20 m/s in 
the drying chamber.  

Fig. 2. A side cross-sectional view of the novel solar dryer 

The inlet (Tin) and outlet (Tout) temperatures are measured with 
two flat K- thermocouples with an accuracy of ± 2 oC are placed 
centrally on the absorber plate on the inlet and outlet ends of the 
collector (See Fig. 1). Two other flat K- thermocouples are 
placed on the central axis of the collector to measure the central 
collector temperature (Tc) and the left-hand side (Tl) collector 
temperature on the central axis. Two honeycomb diffusers before 
the drying chamber (See Fig. 2) uniformize the airflow velocity 
and improve the heat transfer to the drying chamber.  

The drying chamber consists of three drying levels (top, middle, 
and bottom) as shown in Fig. 2. Each level comprises left and 
right compartments (trays) making a total of six trays inside the 
dryer. Four K-thermocouples (accuracy ± 2 oC) are placed on 
each level to measure the temperature distribution on the left and 
right trays. A drying tray without bananas together with the 
measuring thermocouples is shown in Fig. 3, while the one 
loaded with banana slices in an experimental trial is shown in 
Fig. 4. 
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Fig. 3. Empty drying tray showing the central and rear side 
thermocouples.  

Fig. 4. The loaded tray with banana slices with a 1 mm wire 
mesh that was placed on top of the drying tray during a 
drying experiment. 

To prevent the banana slices from dropping down since the pore 
size of the mesh in a tray was in some cases greater than the 
diameter of the slices, a wire mesh with a pore size of 1 mm had 
to be added on top of the tray mesh as shown in Fig. 4.  Each tray 
is about 51 x 47 cm. Each tray has a thermocouple placed at the 
centre and close to the central rear side edge from the door 
opening.  To prevent the growth of microorganisms, bananas are 
first treated with lemon juice. Each tray contains around 120-130 
circular banana slices (disks) with thicknesses ranging from 4.5-
5 mm. The diameters of the slices ranged from 25-30 mm, and 
10 bananas are placed in each tray making a total mass of around 
530 g in each tray. The total mass of the bananas in the six trays 
is around 3.18 kg. 

To measure the airflow velocity inside the chamber, a Testo 450i 
thermal anemometer with a measuring range of 0-30 m/s, a 
resolution of 0.01 m/s and an accuracy of ± 0.01 m/s for a range 

of 0-2 m/s is used. It is placed centrally in between the top trays 
shown in Fig. 4. A Kipp and Zonen CMP11 pyranometer with a 
95 % response time of less than 5 s is used to measure the 
incident global solar radiation on the collector. A Mastech 625 B 
anemometer (range-0.8-30 m/s, resolution- 0.01 m/s,  accuracy 
± 2 %) is used to measure the wind speed during experimental 
tests. A Hession digital temperature and humidity meter 
(accuracy ±5 %, resolution 1 %) is used to measure the relative 
humidity in the drying chamber. 

The first test involves drying the bananas for two consecutive 
days of good solar radiation conditions for periods of 8 h. The 
second test involves continuously drying bananas for a 24 h 
period (9 am on day 1 to 9 am on day 2). During the drying 
experiments, the data from the thermocouples and the 
pyranometer are automatically logged to the computer using an 
Agilent 34970 A data logger. The other remaining measurements 
are taken manually every hour. The total mass of the bananas is 
measured every hour by opening the dryer so that the moisture 
ratio can be estimated. The moisture ratio is estimated [23] as: 

𝑀𝑀𝑀𝑀 =
𝑀𝑀 −𝑀𝑀𝑒𝑒𝑒𝑒

𝑀𝑀0 − 𝑀𝑀𝑒𝑒𝑒𝑒
≈
𝑀𝑀
𝑀𝑀0

,  (1) 

where M is the moisture content, 𝑀𝑀𝑒𝑒𝑒𝑒  is the equilibrium moisture 
content and 𝑀𝑀0 is the initial moisture content. 𝑀𝑀𝑒𝑒𝑒𝑒 is much less 
than M and 𝑀𝑀0 therefore it can be neglected as indicated in Eq. 
(1).  

3. Results and discussion

Fig. 5 shows the solar radiation, wind speed, and collector 
thermal profiles during a solar drying test on two consecutive 
days of generally good solar radiation conditions. The first 8 h 
period of the test started at 9 am on 1 November 2021 and it 
ended at 5 pm. The second drying period of the test was on 2 
November 2021 during the same time interval, and the total test 
period was 16 hrs. The maximum global solar radiation of  
around 1240 W/m2 for both testing periods occurs around 3-4 hrs 
from the commencement of the drying process (Fig. 5A). The 
first testing period shows instances of slight clouds just after 5 
hrs, however,  the average solar radiation values for periods 1 
and 2 are comparable (970 and 1005 W/m2). Windspeeds for 
both test periods fluctuate up and down for the duration of the 
experiments. The maximum wind speed is close to 5 m/s for the 
first test period whereas for the second test period, it is around 
2.5 m/s. The average wind speed in the 16 h test is around 1.40 
m/s. Fig. 5B shows the collector and ambient temperatures. The 
collector temperatures for day 1  follow the same trajectory of 
the solar radiation, and the cloudy period after 5 hrs since well 
depicted by the drop in the collector temperatures. A maximum 

Rear side thermocouple

Central thermocouple

47 cm

51 cm
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outlet collector temperature close to 80 oC is achieved on day 1, 
and the corresponding maximum inlet temperature is around 40 
oC. It can be observed that the middle centre of the collector 
achieves higher temperatures values than the middle far left 
section suggesting better heat transfer at the centre of the 
collector. In contrast to the plots of day 1, day 2 shows slightly 
higher collector temperatures which also vary in a similar 
manner to the solar radiation. The inlet temperature for day 2 
starts at a lower temperature compared to day 1 due to recording 
the temperature after switching on the fans. The middle central 
region of the collector is heated more effectively compared to the 
far-left central region which shows lower temperatures 
suggesting more heat losses at the left edge of the collector. An 
unexpected rise in the inlet collector temperature at around 11.2 
h during day 2 for test 2 causes the other collector temperatures 
to also rise. This rise is likely attributed to a drop in the airflow 
velocity in the collector which causes the inlet temperature to 
rise as the airflow velocity was manually controlled at the set 
power supply current.   

Fig. 5. (A) Global solar radiation and wind speed profiles 
and, (B) collector and ambient temperatures for 16 hrs in 
two consecutive sunny days of drying with an average 
drying airflow velocity of 0.20 m/s. 

The average ambient temperatures for the two test periods of  

30.5 and 28.4 oC, respectively are comparable. Even with the 
slightly lower ambient temperatures on day 2, the collector 
temperatures are higher due lower windspeeds which reduce heat 
losses from the collector.  

Fig. 6 shows the drying chamber thermal profiles for the top, 
middle, and bottom trays. 

Fig. 6. Temperature profiles of the (A) top trays, (B) middle 
trays, and the (C) bottom trays for 16 hrs on two consecutive 
sunny days of drying with an average drying airflow velocity 
of 0.20 m/s. 
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Hourly fluctuations in the thermal profiles to lower temperatures 
are due to opening the drying chamber doors to measure the mass 
of the banana slices that are used to estimate the moisture ratio. 
For the top tray, it is seen for both test periods that the top right 
back section (black trace) achieves higher temperatures than the 
other sections. This is due to the outlet port from the honeycomb 
diffuser being closer to the top back section. For the middle trays, 
the temperature profiles are more comparable, however slightly 
higher temperatures are seen on day 2 of the test due to the 
slightly higher average solar radiation conditions. For the bottom 
trays, the right back section shows slightly higher temperatures, 
and higher temperatures are achieved on day 2 like the middle 
trays. For both test days, the thermal profiles also follow the 
same trajectory as the solar radiation of rise, peaking, and falling. 
The maximum temperatures achieved in the drying chamber for 
day 1 for the top, middle and bottom trays are 48, 43, and 43 oC, 
respectively. For day 2 with comparable higher but comparable 
solar radiation conditions and lower wind speeds, the maximum 
temperatures are 48, 46 and 46 oC for the top, middle, and bottom 
trays, respectively. The relative humidity reduces in the drying 
with an increase in the drying chamber temperatures as the solar 
radiation increases. It drops from  35-15 % on day 1, and from 
30-15 % on day 2.

Fig.7 shows the solar radiation, wind speed, and collector 
thermal profiles for a 24 h testing period from 3-4 November 
2021 using an average drying chamber airflow velocity of 0.20 
m/s. The maximum solar radiation in the test is around 1250 
W/m2, and the average solar radiation during the sunshine hours 
on day 1 is around 980 W/m2. The solar radiation starts to rise 
after 20 hrs on day 2 achieving a maximum value close to 900 
W/m2 at the end of the 24 h drying process. The wind speed 
fluctuates during the solar drying period, and it shows a 
maximum value of around 5.8 m/s at around 3.5 hrs of the drying 
process. During night-time hours, there is very little wind 
blowing. The maximum collector outlet temperature achieved is 
around 84 oC, and the middle center section shows higher 
temperatures than the middle-left section like the 16 h test. After 
8 hrs of solar drying, the collector temperatures drop to minimum 
temperatures of around 15 oC during overnight drying. The 
collector temperatures also start to rise on day 2 with rise in the 
solar radiation. The average ambient temperature is around 32 oC 
during the solar drying period. The ambient temperature drops to 
a minimum of around 15 oC  at night.     

Fig. 8 shows the thermal profiles in the drying trays for the 24 h 
test. Slightly higher top tray temperatures are achieved in test 2 
compared to 16 h test due to the slightly higher collector outlet 
temperatures as result of a lower wind speed variability. The 
back right top and bottom trays show higher temperatures than 
the other sections during the solar drying process like the 16 h 

tests. The maximum temperature achieved at the top trays is 
around 50 oC.  The maximum temperatures attained in the middle 
and bottom are both close to 44 oC. Due to the drop in the 
collector temperatures during night-time drying, the thermal 
profiles in the trays also drop significantly. The minimum 
temperatures attained in the top, middle and bottom trays are 
around 7.5, 6.5. and 6.0 oC, respectively. The highest 
temperatures in the top and bottom trays (top and bottom right 
back) show the greatest drop during night-time solar drying 
suggesting more pronounced heat losses in these two sections. In 
a similar manner to the collector temperatures, the thermal 
profiles of  the drying chamber begin to rise after 20 hrs due to 
the rise in solar radiation.  The relative humidity for the 24 h case 
drops from 40-15 % in the first 8 hours of drying. After that. it 
gradually rises from 15-45 % from 8-22 hrs before dropping 
from 45-25 % between 22-24 hrs.  

Fig. 7. (A) Global solar radiation and wind speed profiles 
and, (B) collector and ambient temperatures for 24 hrs 
drying with an average drying airflow velocity of 0.20 m/s. 

To quantify the effectiveness of the dryer, the average moisture 
ratios in the six trays for the two tests are presented in Fig. 9. 
The 16 h test shows a slightly faster drop in during the first 4 
hrs of drying which is probably attributed to non-uniform drying 
rates in the drying chamber because of different aiirflow 
regimes in the different sections of the dryer. This has to be 
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investugated in future woirk. At 4 hrs of drying, the moisture 
ratio for the 16 h test is around 56 % whereas that of the 24 h 
test is around 62 %. At the end of 8 h, the moisture ratios are 
around 38 and 45 % for the 16 h and 24 h tests, respectively. 
Even though there is no solar radiation after 8 hrs, the drying 
process continues in the 24 h test with the moisture ratio 
attaining a value of 32 % at the end of 24 hrs. On the other-hand, 
due to the sunny period after 8 hrs for the 16 h test, the moisture 
ratio shows a lower value of around 26 %. The results of the 24 
h test suggest that it is possible to improve the performance with 
the use of thermal energy storage (TES) due to the continuous 
drop in the moisture ratio regardless of the lower chamber 
temperatures and the increase in the relative humidity. The 
airflow velocity has a more significant effect on the drying 
process than the relative humidity since the moisture cotinues to 
be removed regardless of the higher relatuve humidity. 

Fig. 8. Temperature profiles of the (A) top trays, (B) middle 
trays, and the (C) bottom trays for 24 hrs of drying with an 
average drying airflow velocity of 0.20 m/s. 

Fig. 9.  Average drying chamber moisture ratios for the 16 
and 24 h tests using an average drying airflow velocity of 0.20 
m/s.  

4. Conclusion

An indirect solar dryer was experimentally evaluated for drying 
bananas under two experimental conditions. The first drying 
condition dried bananas during two 8 h periods of good solar 
radiation for two consecutive days. The second drying condition 
was continuous 24 h drying to evaluate the overnight 
characteristics of the dryer. The thermal characteristics were 
evaluated by measuring the thermal profiles in six drying trays 
using two thermocouples per tray. The moisture ratio was also 
used to evaluate the thermal characteristics in the drying 
chamber. The maximum temperatures attained for both days in 
the 8 h sunny period tests in the top trays were around 48 oC. For 
the 24 h test, the maximum temperature attained at the top trays 
was around 50 oC. The drying process continued regardless of 
the overnight drop in the drying tray temperatures to minimum 
values between 6-8 oC for the 24 h test. The final average 
moisture ratios for the 16 h and 24 h tests are comparable 
showing values of around 26 % and 32 %, respectively. This 
indicates that the solar drying process can be continuously done 
for 24 hrs since the airflow velocity has a more significant effect 
on the drying process than the relative humidity since the 
moisture continues to be removed regardless of the higher 
relative humidity. A storage system can effectively improve the 
drying process overnight since higher temperatures can be 
achieved with stored thermal energy irrespective of the increase 
in the relative humidity. 
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Abstract: A solar-thermal system for co-generation of distilled 

water and energy was investigated in a collaborative study by the 

University of Southampton and Stellenbosch University. The 

system utilises a condensing engine, using solar-generated steam 

at ~1 atm (abs) and a vacuum generated by condensation. The 

study entailed the design, manufacture, commissioning and 

testing of a 6.5 kWth prototype system. From on-sun testing, the 

average daily specific energy consumption (SEC) for water 

distillate production was 2125 kWhGTI/m3; and the average daily 

theoretical solar-to-mechanical energy conversion efficiency 

was 0.79 %. The SEC was determined to be significantly higher 

than existing alternatives such as solar PV reverse osmosis, and 

the energy generation significantly lower compared to 

commercial solar power technology (e.g. solar PV). As such, the 

performance and experience gained with the prototype suggest 

this system is not feasible. 

Keywords: co-generation; compound parabolic collector; 

desalination; solar thermal energy; steam expansion;  

Nomenclature 

Aap [m2] Aperture area 

cp [J/kg K] Specific heat capacity 

do [mm] Outer diameter

∆T [K] Change in temperature 

𝜂coll [%] Collector solar-to-thermal efficiency 

𝜂0 [%] Optical efficiency 

𝜂th [%] Thermal efficiency 

GTi [W/m2] Global tilt (in-plane) irradiance 

GTI [kWh/m2] Global tilt (in-plane) irradiation 

Lcoil [m] Boiler heat-exchanger coil length 

ṁst [g/s] Steam mass flowrate 

Peo [bar (abs)] Condenser (engine exhaust) pressure 

Ps [bar (abs)] Cylinder inlet pressure 

Q̇b [W] Boiler heat gain 

Q̇u [W] Collector useful heat gain 

rexp – Expansion ratio 

SEC [kWh/m3] Specific energy consumption 

Tin [°C] Outlet temperature 

Tin [°C] Inlet temperature 

Vc [m3] Condensate volume collected 

Vclear [m3] Clearance volume (clearance height x 

bore area) 

Vexh [m3] Exhaust volume (exhaust port height 

x bore area) 

Ẇo [W] Mechanical output power 

1 Introduction 

In the global transition towards renewable and sustainable 

energy systems and equitable supply of energy and water 

resources, Southern Africa is a region of particular interest. This 

region has large rural populations, who often lack access to 

energy and clean water, while boasting abundant clean energy 

resources, including a notable solar resource. In a collaborative 

effort, Stellenbosch University (SU) and the University of 

Southampton (UoS) are investigating a low-temperature solar 

thermal co-generation system for combined water distillation 

and energy generation. The system couples a compound 

parabolic solar thermal collector, for steam generation (and thus 

distillation) at ~1 atm (abs), with a reciprocating steam expander 

(developed by UoS) to provide a theoretically simple, robust and 

safe co-generation system. In a parallel study, Reed and Owen 

[1] simulated the potential performance of the system and

concluded that the system was unlikely to be competitive with 

alternatives such as solar photovoltaic-powered reverse osmosis 

(PV-RO) and direct PV power generation. Their work included 

several simplifying assumptions and requires data for validation. 

Despite the questionable feasibility of the system, the component 

performance and technical challenges facing the operation of 

such a system remain interesting. This paper presents the system 

concept and describes a 6.5 kWth prototype developed at SU. At 
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the time of writing, the steam expander was not yet operational 

and this paper includes results from the testing of the solar 

thermal system, and a preliminary (theoretical) analysis of the 

overall system output and efficiency. 

2 System Description 

Figure 1 shows the layout of the experimental system. The 

system consists of two primary sub-systems. The solar steam 

generation system (SSGS) includes the solar collector array, the 

boiler and the feed water supply tank. The condensing engine 

includes the reciprocating steam expander and condenser.  

Figure 1 System P&ID 

Details of the measurement equipment used in the study are 

given in Table 1. In addition to the measurement equipment 

shown in Figure 1, a pyranometer was installed on the collector 

mounting frame for direct measurement of global tilt irradiance 

(GTi), condensate volume flow was measured manually at 

regular intervals to determine the condensate production rate, 

and pressure transducers were used in the boiler, engine, and 

condenser. 

Table 1 Measurement equipment 

Equipment Measurement 
Resolution/ 

Accuracy 

T-type thermocouples

x15

Temperature Error < 1°C. 

10-s intervals.

DMP 331 pressure 

transducers x4 

Absolute 

pressure 

Error < 0.35 %. 

10-s intervals.

Winsmeter TH7 

volume flowmeter x1 

HTF volume 

flowrate 

Error < 0.6 %. 

10-s intervals.

KIPP and ZONEN 

CMP6 pyranometer x1 

GTi Error < 5%. 

10-s intervals.

Laboratory measuring 

beakers x3 

Volume of 

condensate 

5-mL

resolution.

2.1 Solar Steam Generation System (SSGS) 

The system uses six external compound parabolic concentrating 

(XCPC) solar thermal collectors (Figure 2) connected in three 

parallel rows of two collectors each (see Figure 1). These non-

tracking, non-imaging concentrating collectors utilize global 

(beam + diffuse) tilt solar irradiance to heat the heat transfer fluid 

(HTF) circulating through the collector array in a closed loop. 

Liquid water (pressurized to avoid boiling in the collector loop 

itself) provides a safe, affordable, and readily available HTF. 

Figure 2 Solar collector array before pipe insulation 

Each XCPC consists of three metal-glass evacuated tubes, with 

aluminium parabolic reflectors (aperture area Aap = 2.41 m2,

concentration ratio 1.4 [2] and rated optical efficiency 57%). The 

evacuated tubes enclose a pentagon-shaped fin and U-shaped 

copper absorber tube, both coated with a selective absorber 

coating (absorptivity 93-97 %, emissivity 3-7 % [2]). The 

collector array was mounted on a large frame and fixed at 30° 

inclination, facing north.  

The collector efficiency is defined in Equation (1), 

𝜼𝐜𝐨𝐥𝐥 =  
�̇�𝐮

𝐆𝐓𝐢 ∙ 𝐀𝐚𝐩
(1) 

where Q̇u is the useful heat gain (sensible) calculated from the 

measured enthalpy change in the HTF – Equation (2). 
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�̇�𝐮 =  ∑(�̇� 𝐜𝐩 ∆𝐓𝐢𝐨)
𝐢

𝐂

𝐢 = 𝐀

(2) 

where i represents row A, B or C in Figure 1, ṁi is the HTF mass

flowrate through the two collectors in the respective row, cp,i is

the specific heat capacity of liquid water at the bulk mean 

temperature (mean of row inlet and outlet temperatures), and 

∆Tio,i is the temperature rise over the row (e.g. T14 – T10 for

row C in Figure 1). 

Steam is generated indirectly in a 70-litre kettle-type boiler (see 

Figure 3) with a helical coil heating element (Lcoil = 9 m,

do = 25 mm) carrying the HTF from the solar collectors. The 

boiler and collector were sized together to operate in the nucleate 

boiling regime, with the boiler pressure being approximately 

1 atm (abs) and always below 1.5 bar (abs). Indirect steam 

generation was selected to limit fouling in the solar absorber 

tubes and facilitate easier maintenance through periodic 

blowdown and cleaning of the boiler.  

Figure 3 Side view of the system showing the boiler, engine 

and condenser 

The boiler is equipped with various temperature and pressure 

sensors (the latter controlling the valve between the boiler and 

the engine); a pressure relief valve (for passive safety); a vacuum 

breaker; a blowdown port; and connectors for the HTF, 

feedwater, and steam.  

The heat gain by the boiler is equal to the sensible heat loss of 

the HTF as it passes through the coil, determined using the total 

HTF enthalpy change through the helical coil – Equation (3). 

�̇�𝐛 = �̇� 𝐜𝐩 (𝐓𝐢𝐧 − 𝐓𝐨𝐮𝐭) (3)

Feedwater is supplied from a 500-litre storage tank by a pump 

controlled by a float switch in the boiler. The water level in the 

boiler is kept relatively constant to avoid large influxes of cold 

water and quenching of the boiler pool. 

The SSGS was sized to supply the engine with steam at a rate of 

4.36 L/s at 1 bar (abs), equating to 2.56 g/s of saturated vapor 

The sizing was done using a collector-boiler model constructed 

in MATLAB, for a clear day with a peak GTi of 900 W/m2, 

(which is the overall average daily peak for the test location 

taken from data for the year 2021 [3]). 

2.2 Condensing Engine 

A two-cylinder uniflow condensing engine (reciprocating steam 

expander and condenser) was designed to generate mechanical 

power from the steam supplied by the SSGS. The steam 

expander was designed by UoS and manufactured by SU. 

2.2.1 Reciprocating steam expander 

The piston-cylinder steam expander is shown in Figure 4 

(100 mm bore diameter, 160 mm stroke, 3.7 mm clearance 

height, and 10 mm exhaust port length).  

Figure 4 Engine CAD (by UoS) front view, partial section 

The major components in Figure 4 are: (1) cylinder, (2) cylinder 

jacket, (3) piston assembly, (4) flywheel, (5) conrod, (6) crank, 

(7) counterweight, (8) gear train, (9) position sensor assembly,

(10) auto-mechanical vacuum pump (AMVP) cylinder, (11)

AMVP piston assembly, (12) AMVP housing, (13) starter

handle, (14) aluminium frame and bearing housings, (15)

adjustable feet, and (16) drip tray.

2.2.2 Basic Operating Principles 

The engine was designed to operate between 60 and 120 rpm. A 
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single revolution of the engine includes one downstroke and one 

upstroke for both pistons, which equates to a single revolution of 

the crankshaft and four revolutions of the output shaft. During 

engine operation, steam is injected alternately into the top of 

cylinder 1 and 2, prompted by the engine position sensor. Each 

cylinder has both a supply and exhaust solenoid valve at its inlet, 

in addition to the exhaust ports in the cylinder which are exposed 

at the bottom of the downstroke.  

The motive force for the engine is the pressure difference across 

the piston (bottom surface exposed to ambient, top surface 

exposed alternately to steam / vacuum). The thermodynamic 

cycle, illustrated in Figure 5, begins with the piston at TDC (5).  

Figure 5 P-V diagram for full condensing engine cycle 

The inlet valve opens and steam is supplied, initially at ~1 bar 

(5-1), before the downstroke begins. The piston is pulled 

downwards by the momentum of the engine (the pressure on 

either side of the piston is similar at this stage). The inlet valve 

remains open for the initial part of the downstroke (1-2, constant 

pressure). If the valve is closed, then the cycle follows an 

isothermal expansion process (2-3), with a steam jacket around 

the cylinder providing the additional heat input. Expansion ratios 

up to 1:43 are theoretically possible. Alternatively, the inlet 

valve can remain open for the downstroke, in which case there is 

no expansion (2-2*, expansion ratio 1:1). Towards the end of the 

downstroke, the exhaust ports are exposed and the steam is 

instantaneously evacuated into the condenser (3-4), which 

operates under vacuum. The pressure inside the cylinder is now 

sub-atmospheric and the piston is driven upwards by 

atmospheric pressure acting on the bottom surface of the piston. 

The exhaust solenoid valve at the top of the cylinder can be 

closed (4-5) or open (4-5*) during the upstroke. 

2.2.3 Condenser 

The condenser is critical to the operation of the condensing 

engine since it maintains the vacuum that results in the net 

pressure difference across the piston during the upstroke (and 

thus the motive power). SU’s laboratories are equipped with a 

simple water-cooled, counterflow, double-pipe heat exchanger 

supplied with cooling water from a water reticulation system 

(WRS) at ~50 L/min, of sufficient rating. While unlikely to be 

practical for the eventual system, this condenser provided a 

convenient solution for the prototype demonstration.   

At start-up, an electric vacuum pump is used to evacuate air from 

the condenser, engine piping and boiler. Once the system is 

running, the vacuum in the engine is maintained by the AMVP, 

driven off the engine crankshaft. When the AMVP piston moves 

upward it creates a vacuum in the AMVP cylinder, drawing the 

condensate from the condenser. On its downstroke it discharges 

the condensate into the condensate collection tank. 

The volume of collected condensate (Vc) is measured and the

Specific Energy Consumption (SEC, kWh/m3) of the system – 

Equation (4) – is used to assess and benchmark the water 

production efficiency of the system. 

𝐒𝐄𝐂 =
𝐆𝐓𝐈 ∙ 𝐀𝐚𝐩

𝐕𝐜
(4) 

2.3 Engine Power and Efficiency 

The engine performance is measured using the thermal 

efficiency (𝜂th) defined in Equation (5),

𝜼𝐭𝐡 =  
�̇�𝐨

�̇�𝐛

(5) 

which is the ratio of mechanical power output to boiler heat gain. 

The thermal efficiency of the engine was estimated using a linear 

relationship between the thermal efficiency and engine 

expansion ratio: rexp = 1 to 4, corresponding to 𝜂th = 2 to 5.5 %,

derived from measured data obtained by UoS [4]. The 

mechanical power output was therefore inferred using 

Equation (5) and the measured heat input, with a variable 

thermal efficiency determined at each time step using 

Equation (6). 

𝐫𝐞𝐱𝐩 = 𝐦𝐚𝐱 [𝟏 ;  
𝟐. 𝟓𝟔 𝐠/𝐬

�̇�𝐬𝐭

] (6) 

3 Results 

Results for three 8-hour SSGS performance tests (14, 16 and 18 

February 2023) are reported here. The generated steam was 

passed through the piping and solenoid valves that connect the 

SSGS to the engine and the engine to the condenser (to emulate 
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the real pressure losses in the system). Issues with maintaining 

vacuum have prevented successful operation of the engine to-

date. Theoretical engine output is thus estimated based on the 

expected thermal efficiency and measured SSGS performance. 

Tests were carried out at SU’s Solar Rooftop Laboratory 

(33.92810°S, 18.86540°E). Test results are extended to 

theoretically estimate annual yield from the system. 

3.1 Solar Input 

All three days of testing are considered good solar days during 

the global-south summer. Figure 6 presents the measured GTi 

distribution. Cloudy periods on 14-Feb are excluded from this 

analysis (dashed lines in the figures) as they add no further value 

to the conclusions drawn. 

Figure 6 Measured global tilt (in-plane) irradiance 

The section highlighted in green in Figure 6 is the ramp-up 

period during which the boiler water is sensibly heated to its 

saturation temperature. The in-operation period, when the boiler 

was generating steam, is indicated in yellow. The peak GTi on 

14, 16 and 18 February were 1065, 1110 and 1110 W/m2, 

respectively. 

3.2 System Output 

Figure 7 shows the steam generation rate for the three test 

periods. Steam was generated at (or above) the required rate of 

2.56 g/s during the middle part of the day for all three tests (2-3 

hours), reaching a maximum of 2.65, 2.79, and 2.85 g/s; with a 

mean value of 2.10, 2.10, and 2.25 g/s on 14, 16, and 18 

February, respectively. Seeing as the tests were conducted on 

good solar days, the results suggest the SSGS would require 

upsizing to meet the required rate during winter and to increase 

the duration of full-load generation during summer. The 

inclusion of thermal energy storage (TES) to store the excess 

thermal energy during peak solar hours may be of benefit. 

Furthermore, as with any solar powered system, the variable rate 

of heat input, and associated variations in steam generation (and 

condition) in this case, would need to be accounted for through 

careful valve control and / or energy storage to result in steady 

operation of the engine.  

Figure 7 Rate of steam production 

The average daily SEC was 2125 kWhGTI/m3, with the hourly 

distribution shown in Figure 8. 

Figure 8 Solar-to-distillate specific energy consumption 

Furthermore, the inferred mechanical power output is presented 

in Figure 9, which gives an average daily solar-to-mechanical 

energy conversion efficiency of 0.79 %. 

Figure 9 Theoretical mechanical power output 

3.3 Annual Performance 

Based on the average daily SEC and solar-to-mechanical 

efficiency, the annual water and power production were 

estimated using monthly satellite GTI data for the test location 

from SOLARGIS [5]. The total annual GTI for the test location 

is 2149.7 kWhGTI/m2. The system is estimated to produce an 

annual specific mechanical power output of 17.1 kWh/m2, with 

the monthly distribution illustrated in Figure 10, which also 

shows the electrical output assuming a mechanical to electric 

efficiency of 80 % [6], as well as the monthly distillate 

production, equating to an annual output of 1012 L/m2 and 

average daily output of approximately 2.8 L/m2.   
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Figure 10 Monthly specific mechanical power and distillate 

production 

To assess the practicality / feasibility of the system investigated 

in this study, a comparison is made to a solar PV-powered co-

generation system consisting of a PV-RO water purification 

system (SEC as low as 4 kWhsolar/m3 [7, 8]) and generating 

additional electricity (PV module efficiency 15 % [8]). The 

systems are sized to generate ~50 kWhe/month (Free Basic 

Electricity grant in South Africa [9]) in winter (average of 

127.1 kWhGTI/month) at the test location.  

The results of the comparison are shown in Table 2 and indicate 

that the investigated system is not feasible since a PV-powered 

alternative is significantly more compact to produce the same 

amount of electricity and cean water, makes use of much less 

complex and more mature technology, and will cost significantly 

less based on total size. The total required PV aperture area is 

2.75 m2 compared to 62.7 m2 in XCPC aperture area for the 

system investigated in this study. 

Table 2 Comparison with solar PV 

System ID Solar PV This System 

Total Collector Area (m2) 2.62 0.12 62.7 

Approx. Number of 
Collectors/Panels 

2-3 26 

Average Electrical Energy 
Output (kWh/month) 

50 – 50.6 

Clean Water Output 
(L/month) 

– 3900 3900 

4 Conclusion 

This paper describes a novel solar thermal clean water and 

energy co-generation system. A 6.5 kWth prototype was 

developed as part of this work and this paper presents measured 

results for the steam / distillate production along with theoretical 

energy generation predictions. At the time of writing, the engine 

was not operational and getting the full system to operate has 

proven challenging. The results obtained show the SEC and 

solar-to-mechanical energy efficiency are notably poor 

compared to commercially available technologies such as solar 

PV reverse osmosis and PV power generation, suggesting that 

this system is not technically feasible. Furthermore, the 

investigated system is notably more complex and expensive. The 

condensing engine is nonetheless an intriguing prospect for 

waste heat recovery (avoiding the need for a dedicated solar 

thermal steam generation system) and the XCPC collectors have 

shown good thermal performance and are of interest for 

industrial process heat applications. 
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Abstract: A solar-hybrid gas turbine combines the 

environmental advantages of concentrating solar power (CSP) 

with the capabilities of a micro gas turbine's (MGT) continuous 

high-power output.  A variety of options are available to improve 

MGT's performance and efficiency, with the primary focus being 

on its compression stage.  An upgraded compressor stage for an 

existing solar-hybrid application MGT testbench is presented. 

MGT engines commonly feature a centrifugal compressor stage 

due to higher per stage pressure ratios being achieved compared 

to single stage axial configurations.  The existing operational 

solar-hybrid MGT testbench, operates at low efficiency.  The 

impeller of the MGT is redesigned by first simulating the 

existing impeller in a computational fluid dynamics (CFD) 

simulation and comparing the results to its existing performance 

charts.  It is then redesigned with a one-dimensional (1D) mean 

line code and simulated in CFD to evaluate performance 

improvement.  The new design is further improved by increasing 

the geometrical tolerances of the impeller stage's tip gaps to the 

finest achievable manufacturing tolerance of 0.3 mm.  This 

improvement increases the simulated pressure ratio and 

efficiency of the MGT compressor from 1.482 to 1.55 and 78.3% 

to 84.2%, respectively.  The MGT testbench predicted overall 

output power improves by 22.7%, from 18.078 kW to 

22.186 kW.  Due to a redesigned impeller and finer impeller 

clearance tolerance requirements, both the impeller and shroud 

cover need to be re-manufactured.  This enables the centrifugal 

compressor to provide its optimal performance based on 

geometrical limitations. 

Keywords: Centrifugal compressor design; Micro gas turbine; 

Solar-hybrid gas turbine. 

1. Introduction

South Africa is blessed with some of the highest Direct Normal 

Irradiance (DNI) levels in the world, with certain regions 

receiving more than 9 kWh/m2 each day, equating to 

3 287 kWh/m2 annually according to [1].  These high DNI zones 

in South Africa, particularly in the Northern Cape, are regarded 

to be relatively remote, with few human settlements and dry, flat 

landscapes.  As a result, this area is particularly suitable for 

harnessing the sun's energy for renewable energy generation. 

A small-scale concentrating solar power (CSP) system based on 

the Stellenbosch University Solar Power Thermodynamic 

(SUNSPOT) cycle (proposed by [2]), has been investigated at 

Stellenbosch University's Mechanical and Mechatronic 

Engineering Department.  The SUNSPOT cycle integrates a 

conventional CSP plant with a Brayton cycle gas turbine 

generator, offering the benefits of a hybrid system.  This cycle is 

represented in Fig. 1 below, where the Brayton cycle is coupled 

to the CSP plant through the combustor and turbine. 

Fig. 1. The SUNSPOT cycle (proposed by [2]) 

Sunlight is reflected onto a central receiver tower by heliostat 

mirrors, which transports heat to the gas turbine that generates a 

significant amount of heat on its own.  This heat is then 

transferred from the gas turbine to a storage facility, where the 
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remainder of the cycle functions as a traditional CSP plant.  That 

is, steam is produced by a boiler and used to drive a steam 

turbine, which generates electricity through a generator.  The 

remaining work produced by the gas turbine is transferred to 

another generator and contributes to overall electricity 

generation.  The performance of the gas turbine generator is 

therefore essential to the overall efficiency of the SUNSPOT 

cycle. 

The micro gas turbine (MGT) testbench, designed and built by 

[3] and intended for use in a solar-hybrid application, has a twin-

spool and twin-shaft configuration.  The gas generator and power

turbine sections were developed by using BorgWarner K31 and

K44 turbocharger models respectively.  The K44 model, which

initially served as the power turbine, is replaced by another K31

model that offers a better operating point for the engine.

Therefore, both the gas generator and power turbine sections

now feature the same K31 model.  The tubular style combustion

chamber was designed and built by [4] for an MGT

engine similarly to the K31 turbocharger setup.  This MGT

engine is depicted in a flow diagram in Fig. 2 below, with the

central receiver system omitted because the focus of this work is

on the MGT engine.

Fig. 2. Layout of twin-shaft MGT system (acquired from [5]) 

The K31 model, acting as the gas generator, includes the 

compressor and high pressure (HP) turbine.  Whereas the other 

K31 model, acting as the power turbine, includes the low 

pressure (LP) turbine and output power section.  This K31 

model’s compressor is omitted since it acts purely as a load for 

the LP turbine to drive, which will later be replaced with a 

generator.  The inlet and outlet of each stage is labelled, and the 

compression stage, which is the primary focus of this paper 

consists of a centrifugal impeller and a diffuser separated by 

point 2. 

According to [6] a centrifugal impeller uses centrifugal force to 

propel fluid outwards, where the fluid's energy increases through 

raising static pressure and velocity levels.  As it exits the 

impeller, the diffuser converts kinetic energy into pressure 

energy. 

This paper investigates the effect of upgrading the compression 

stage of the twin-shaft MGT testbench engine, on overall system 

performance and operating efficiency.  This is accomplished by 

redesigning the compressor's centrifugal impeller and diffuser 

using a one dimensional (1D) mean line code.  On the new 

design, a computational fluid dynamic (CFD) simulation is 

carried out to provide compressor performance charts that allow 

the performance of the system to be analysed and compared to 

the existing one.  A model of the engine has been developed in a 

fluid network simulation program by [7], which is used to 

evaluate the overall improvement of the new compressor design. 

Previous research on designing centrifugal compressors focused 

mostly on acquiring a design methodology and testing the new 

design on an MGT engine for performance improvement 

evaluations.  This design methodology entails first replicating 

the original impeller's geometry, then subjecting it to a CFD 

analysis and comparing the performance results to the original.  

Subsequently, a new impeller design is optimised using the 1D 

mean-line code to achieve the desired performance.  The 

improved pressure ratio and efficiency performance charts of the 

new impeller design, obtained from its CFD analysis, are then 

tested and compared to those of the replicated design. 

2. Flownex® Model

Flownex® (2022b), a fluid network simulation program, is used 

to model different properties such as mass flow, pressure, and 

temperature, as well as any other fluid properties required for 

performance analysis of a system.  It solves the mass, 

momentum, and energy conservation equations to acquire the 

results.  The Flownex® program constructs a network 

representing a system by using component icons made up of 

nodes, elements, and boundary conditions.  The settings for each 

of these components can be adjusted to correctly portray the fluid 

conditions and the engine's size proportion. 

2.1. Twin-Shaft MGT Flownex® Model 

The twin-shaft micro gas turbine (MGT), developed by [3], was 

successfully modelled using Flownex® by [7].  This model's 

nodes, elements, and boundary conditions are presented in Fig. 

3. It has been altered from its original layout to be superimposed

on the flow diagram in Fig. 2.

The components of the compressor's inlet mimic a bellmouth, 

with the fluid adjusted to precisely match that of ambient air 

entering the engine.  It is powered by a high pressure (HP) 

turbine, which is represented by a rotating shaft element, and its 

outlet is connected to the combustion chamber. 

The addition of fuel to the inlet of the combustion chamber 
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represents an increase in the mass flow rate of fluid going 

through.  To depict the behavior of internal combustion, the 

combustion chamber is made up of a pipe, a pump, and an 

adiabatic flame element.  The outlet of the combustion chamber 

is connected to the HP turbine via a resistive network pipe and a 

heat transfer element which indicates friction and heat loss. 

The outlet of the HP turbine is connected to the low pressure (LP) 

turbine via a heat transfer pipe element, also indicating heat loss.  

Its outlet is open to the atmosphere, as defined by the boundary 

condition. 

The LP turbine is intended to power a generator that generates 

electricity; however, this model incorporates a load 

compressor which the LP turbine drives.  This load compressor, 

which is likewise linked with piping elements, serves as a load 

for the LP turbine, which is regarded as the overall engine output 

power. 

2.2. Compressor Maps 

Compression and efficiency performance charts (compressor 

maps) portray the relationship between pressure ratio and mass 

flow rate, with superimposed rotational speed curves and 

efficiency contours.  These compressor maps are what define a 

specific compressor in Flownex®, where the data is interpolated 

and any operating points within the compressor range can be 

predicted.  Fig. 4 shows a compressor map labelled with all the 

essential components. 

Fig. 4. Compressor map (acquired from [6]) 

The subscripts 1 and 3 refer to the compressor's inlet and outlet, 

respectively, with the suffix 0 indicating stagnation (total) 

conditions.  The vertical axis label is the pressure ratio, 
𝑃03

𝑃01
,

plotted as a function of 
�̇�√𝑇01

𝑃01
 for fixed values of 

𝑁

√𝑇01
.  The 

constant efficiency islands are calculated using Eq. (2), derived 

in [6] from the pressure ratio (Eq. (1)), where 𝑘 is the specific 

heat ratio of air, yielding the ideal running point regions. 

𝑃𝑅𝐶(𝑇−𝑇) = (
𝑃03

𝑃01
)         (1) 

𝜂𝐶(𝑇−𝑇) =
(

𝑃03

𝑃01
)

𝑘 − 1
𝑘

− 1

(
𝑇03

𝑇01
) − 1

(2) 

At the upper pressure ratio, the stall point region is where the 

constant speed curves end and the compressor becomes unstable.  

The choke point region is when the constant speed curves 

become vertical and no increase in 
�̇�√𝑇01

𝑃01
 can be achieved at 

these lower pressure ratios. 

The Flownex® model's compressor is already set up with the 

K31 compressor maps, from which initial performance results 

are produced.  Following that, the new impeller design's 

compressor maps are imported into the Flownex® model to 

produce new results that are used to evaluate the engine's overall 

performance improvement. 

3. Centrifugal Compressor Design

According to the previously mentioned design methodology, the 

geometry of the existing centrifugal compressor impeller is 

measured and replicated in a three-dimensional (3D) modelling 

tool.  This reverse engineering technique is used to provide a 

baseline design for testing and future improvements.  Following 

that, a one-dimensional (1D) mean line code is applied to 

iteratively develop a new impeller design based on desired 

running points. 

Fig. 3. Flownex® model of twin-shaft MGT (Adapted from [7]) 
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3.1. Current Impeller 

The current K31 compressor consists of an impeller and a 

vaneless diffuser, which means that the diffuser is simply an 

open passageway.  The basic dimensions of the impeller, such as 

diameters and axial lengths, are measured manually with a 

vernier calliper.  The remainder of the impeller's dimensions, 

particularly the blade profiles, have a very complex geometry 

that necessitates a more sophisticated 3D measuring technique. 

The geometry of the impeller, including the complex blade 

profiles, is captured using a structured light 3D scan method.  It 

works by projecting light in a grid pattern, which becomes 

distorted when reflected off an object, and cameras catch the 

reflections to form the model.  The EinScan Pro 2X 3D scanner, 

developed by [8], is used to carry out this task.  This device 

used is housed and administered by [9], located in the 

Stellenbosch University library.  Fig. 5 exhibits the 3D scanner 

scanning the impeller. 

Fig. 5. EinScan Pro 2X 3D scanner 

The turntable, on which the impeller is mounted, turns in small 

increments as cameras record its geometry.  The computer 

program, interacting with the scanner, builds a point cloud of 

millions of points resembling the impeller.  The point cloud is 

then refined into a solid mesh that replicates the impeller's 

geometry.  From this mesh, exact x, y, and z coordinate point 

measurements can be captured along all the blade profiles and 

imported into a 3D modelling program such as Autodesk 

Inventor® Professional where the blade geometries can be built.  

Fig. 6 shows the existing K31 impeller alongside the 3D scanned 

impeller. 

(a)         (b) 

Fig. 6. (a) K31 impeller and (b) scanned impeller result 

The Einscan Pro 2X claims to deliver a scan accuracy of 

0.04 mm, which was validated and proven to be within range.  

This was accomplished by comparing the basic dimensions of 

the physical measurements to the same dimensions in the 

Inventor® 3D model. 

3.2. New Impeller and Diffuser Design 

The 1D mean-line code is based on a centrifugal compressor 

design procedure developed by [10].  It has been optimised 

further, providing users with more control over designing a 

compressor based on design specifications.  It is currently used 

to assist in the design of centrifugal compressor components 

such as the impeller and diffuser, and it additionally provides the 

required geometry file to conduct a computational fluid dynamic 

(CFD) analysis.  A user-friendly graphical user interface (GUI) 

application (App) in Matlab® for the 1D mean-line code was 

developed by [11] for assisting users with initial compressor 

designs.  The 1D App follows a logical procedure featuring user 

inputs and is divided into five steps according to [11], which are 

listed below: 

• Inlet Thermodynamic Conditions:  Here, the atmospheric

conditions and the fluid characteristics of air are set.

• Impeller Design:  The impeller's geometrical inputs are

specified at a desired operating speed and output

performance.  The two-dimensional (2D) blade profile can

also be modified, and calculated preliminary performance

results can be compared to the intended performance.

• Diffuser Design:  Similar to the Impeller Design,

geometrical inputs are specified to achieve a desired output

performance.  The 2D blade profile can be modified, and

preliminary performance results are calculated.

• Overall Performance Results:  The performance of the

impeller and diffuser is calculated at specified operating

points, enabling users to validate their initial design.

• CFD Output:  The geometry of the impeller and diffuser is

exported as a .geomTurbo file, which specifies the blade

profiles and operating points.  The .geomTurbo file is

imported into Numeca FINE™/Turbo software for CFD

analysis.

These five steps are performed in an iterative procedure where 

more than one compressor is designed.  CFD simulations provide 

more accurate results that must be compared and validated to 

determine the optimal design.  The chosen impeller and diffuser 

generated by the 1D App from the preceding five steps are shown 

in Fig. 7 below. 
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 (a)                                              (b) 

Fig. 7. (a) Impeller and (b) diffuser 1D App design 

The characteristics of this final design were chosen to perform at 

a higher pressure ratio and efficiency.  To aid in this, the 

tolerance of the gaps between the impeller and its 

housing is increased to the highest manufacturing tolerance 

achievable with standard machinery.  As a result, the new 

design's housing gap was decreased from the K31 impeller's 

0.65 mm to 0.3 mm.  The new impeller design includes an 

additional main and splitter blade to help reduce a blade loading 

parameter.  In comparison to the vaneless diffuser in the K31 

compressor, the new compressor design has a 20-blade vaned 

diffuser to improve the pressure ratio even higher. 

The new design aims to increase the output power of the micro 

gas turbine (MGT) while improving overall engine efficiency.  It 

intends to achieve this by running the compressor at an ideal 

operating point based on the compressor maps illustrated 

from Fig. 4. 

4. CFD Analysis

A computational fluid dynamic (CFD) simulation is essential 

because it gives valuable data that aids in understanding the 

compressor's performance.  It provides the total-to-total pressure 

ratio and efficiency performance curves that the Flownex® 

model requires.  The CFD software used in this study is Numeca 

FINE™/Turbo v16.1, which is ideally suited for turbomachinery 

and functions well with the one-dimensional (1D) application 

(App). 

4.1. Setup 

The Reynolds-Averaged Navier-Stokes (RANS) Equations are 

solved using the Spalart-Allmaras turbulence model in this CFD 

simulation.  In comparison to the two equation models, 𝑘 − 𝜀 

and 𝑘 − 𝜔, Spalart-Allmaras, a one equation model developed 

by [12], is chosen for its improved boundary layer prediction in 

the presence of adverse pressure gradients.  Its initial intended 

use for aerofoil applications has resulted in its popularity for 

modelling turbomachinery applications. 

The CFD simulation requires a mesh configuration, which 

entails dividing the domain into a grid.  Before the three-

dimensional (3D) mesh is generated, the grid pattern and number 

of points along the blades are adjusted in a two-dimensional (2D) 

blade-to-blade (B2B) mesh.  This process is necessary to ensure 

that the grid achieves a good quality, where its orthogonality, 

aspect ratio, and expansion ratio are all within a particular range. 

Table 1 lists the recommended requirements for these in 

accordance with [13], along with the worst results and the 

percentage of these "bad cells" that were obtained. 

Table 1. Mesh quality results 

Quantity Criteria Worst Value % Bad Cells 

Orthogonality > 25° 22° 0.098% 

Aspect ratio < 2500 519 0% 

Expansion ratio < 1.8 2.4 0.999% 

Further quality optimisation steps are performed on the mesh to 

guarantee that it meets the Spalart-Allmaras criteria for the non-

dimensional distance, 𝑦+, at the walls.  The 𝑦+ distribution

mostly stayed within the required range of 1 to 10, with 

minimum and maximum values of 0.142 and 11.172 at non-

critical locations.    The size of the grid cells is checked for mesh 

independence, where the results of a coarse, medium, and fine 

mesh are compared.  This is accomplished by generating a 

performance curve from simulations of each of the three meshes 

at a particular operating speed, as shown in Fig. 8. 

(a)     (b) 

Fig. 8. (a) Pressure ratio and (b) efficiency mesh 

independence performance curves 

The performance curve produced by the coarse mesh 

differed from the curves generated by the medium and fine 

meshes.  Whereas the performance curves generated by the 

medium and fine meshes were almost exact.  Therefore, mesh 

independence is achieved because any further increase in mesh 

density will not significantly improve the results. 

The remainder of the CFD setup entails establishing the domain 

and its boundary conditions, as well as setting the necessary 

output variables to be analysed.  The inlet, outlet, periodic, and 

solid boundaries make up the domain's boundary conditions.  

The inlet and outlet boundaries denote the locations where air 

flows into and out of the domain.  The inlet boundary is set up to 

replicate atmospheric air conditions of 100 000 Pa and 298 K, 

while the outlet boundary is defined as a mass flow imposed, 
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which specifies a particular mass flow rate for the simulation to 

run at.  Finally, the solution's convergence is monitored and 

approved when the inlet and outlet mass flow rates are equal.  It 

is limited to a maximum of 6 000 iterations, giving the solution 

sufficient time to converge and meet this condition. 

4.2. CFD Results 

The CFD simulations are used to generate the compressor maps, 

as shown in Fig. 4, which are required by the Flownex® model.  

This is done by simulating various mass flow rate points along 

the operating range, and then assessing the results to calculate 

the pressure ratio and efficiency from Eq. (1) and Eq. (2) 

respectively.  Lowering the mass flow rate until the pressure ratio 

reaches a maximum value determines the stall point, or lower 

mass flow rate boundary.  The choke point, or upper mass flow 

rate boundary, is defined as the point where the pressure ratio 

curve becomes vertical and no further increase in mass flow rate 

is possible.  The choke point is found by specifying an 

unrealistically low outlet pressure and then running the 

simulation to determine the choke mass flow rate.  These curves 

are constructed at various operating speeds to collect adequate 

data for the Flownex® model. 

To begin, the scanned replica impeller is simulated in CFD to 

obtain its compressor maps, which are then compared to those of 

the K31 to validate the CFD accuracy.  These curves are shown 

in Fig. 9 below, with the scanned replica impeller's curves 

superimposed on the K31 curves. 

(a) 

(b) 

Fig. 9. (a) Pressure ratio and (b) efficiency compressor 

maps of scanned replica and K31 impeller 

The curves of the scanned replica mostly match those of the K31, 

with maximum deviations of 6.5% and 6.8% for the pressure 

ratio and efficiency, respectively.  It is concluded that a minor 

deviation is to be expected because the K31 maps are obtained 

from actual test runs where more losses are present.  Because 

actual test runs on the compressor allow for pushing further 

boundary points than a CFD simulation can produce, the stall 

point of the K31 maps occurs further to the left, as expected. 

The new designed impeller and diffuser were subject to the same 

CFD simulation conditions and method of constructing the 

performance curves.  The compressor map curves of the new 

design are compared to those of the scanned replica in Fig. 10. 

(a) 

(b) 

Fig. 10. (a) Pressure ratio and (b) efficiency compressor 

maps of new design and scanned replica impeller 

The new design displays a narrower operating range compared 

to the replica due to one additional impeller main and splitter 

blade and the addition of the vaned diffuser, causing choking to 

occur earlier.  However, it produces a higher pressure ratio and 

efficiency at each of the engine speeds' optimal operating point, 

indicating that it can provide better performance for the micro 

gas turbine (MGT). 

5. Results

The K31 compressor maps are first configured to the compressor 

in the Flownex® model, and the MGT is simulated to obtain 

initial results.  The compressor maps of the scanned replica 

impeller are then configured to the compressor of the Flownex® 

model to verify how closely they match.  Subsequently, the 
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compressor maps of the Flownex® model are replaced with 

maps of the new compressor design to determine the 

improvements in performance.  A constant engine speed of 

53 000 rpm is chosen because this is the observed speed at which 

all the compressors run at peak efficiency.  The compressor and 

overall operating performance results of the Flownex® model 

are listed in Table 2. 

Table 2. Flownex® model MGT results 

𝑃𝑅𝐶(𝑡𝑡)

[-] 

𝜂𝐶(𝑡𝑡)

[%] 

�̇�𝐶 

[kg/s] 

�̇�𝑜𝑢𝑡

[kW] 

𝜂𝑀𝐺𝑇

[%] 

K31 1.477 77.8 0.218 17.8 8.86 

Replica 1.482 78.3 0.219 18.078 8.93 

New design 1.55 84.2 0.241 22.186 9.96 

The replica's design results match the operating point of the K31 

compressor with a minor variance, resulting in a total output 

power that is 1.56% higher.  This was expected given that the 

scanned replica impeller's compressor maps are based on a CFD 

simulation executed under ideal conditions, whereas the K31's 

are based on actual test runs.  The compressor results of the new 

design enhance the pressure ratio and efficiency operating 

points, boosting the MGT engine output power by 22.7% above 

the scanned replica's performance. 

6. Discussion and conclusion

This paper presents the redesign of a centrifugal compressor for 

an MGT engine used for a solar-hybrid application.  A 

Flownex® model of this MGT is examined where its 

performance can be predicted, and its compressor stage is 

defined by compression performance charts.  The geometry of 

the existing impeller is replicated in software, which was done 

by a 3D scanner.  The 1D App was used to aid in the development 

of a new impeller and diffuser design.  CFD simulations are 

performed on both the scanned replica and the new design to 

generate performance charts for further modelling the MGT’s 

performance in the Flownex® model. 

The compressor maps of the scanned replica exhibited a small 

variance when compared to the K31 compressor maps.  The 

MGT's overall output power deviates from 17.8 kW, when 

configured with the K31 maps, to 18.078 kW, when configured 

with the scanned replica's maps.  Modelling the new design's 

compressor maps yield a substantially higher compressor 

operating point at which the engine's power improves by 22.7% 

from 18.078 kW, of the scanned replica impeller, to 22.186 kW. 

This modification to the MGT improves overall performance by 

enabling the MGT's compression stage to offer an optimal 

operating point.  The new compressor not only boosts the output 

power of the solar-hybrid MGT configuration, but it also allows 

for future modifications in other stages of the engine to extract 

the maximum performance achievable from this system. 
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Abstract: The Rankine cycle has been a leading power 
generation cycle for years. Recently however, the Brayton 
cycle, specifically the recompression configuration, has proven 
to be more efficient when using sCO2. Studies have 
demonstrated that if the compressor inlet temperature and 
pressure of sCO2 are maintained near the critical values, the 
cycle's efficiency can be improved. For this project, the goal 
was to design a water-cooled shell and tube heat exchanger 
(STHE) that can cool sCO2 to within a range of 30°C to 33°C 
for a Brayton recompression cycle and evaluate its performance 
when used with CSP. The STHE was designed iteratively using 
the Bell Delaware method and TEMA standards. With 
FLOWNEX, a simulation of the Brayton recompression cycle 
with an inventory control system was conducted using DNI 
collected in the Upington area on the hottest day of the year. 
For this simulation, it was found that a minimum heat input of 
35MW was required for accurate results. It was shown that 
even when the dew point temperature varies, the heat 
exchanger can maintain the required outlet temperature. 
However, it transpired that this could not result in the predicted 
51.5% efficiency, but cycle temperatures revealed to be stable 
even during transient operation. To achieve the above 
efficiency, a combination of pressure ratio, split ratio, and main 
compressor inlet temperature (CIT) to the recommended range 
is required to ensure efficiency increase. 

Keywords: Supercritical carbon dioxide Brayton cycle; 
Compact heat exchangers; Recompression cycles; 
Concentrated Solar Power. 

1. Introduction

According to the International Energy Agency [1], the world 
energy demand is expected to continue its rise for the 
foreseeable future. The Stated Policies Scenario (STEPS) 
predicted an annual growth of 1% between 2022 and 2030, 
while the Announced Pledges Scenario (APS) predicted a 0.2% 
annual growth. However, it is necessary to highlight that these 
predictions account for the current energy crisis, leading to a 

3.3% drop from the previous 2030 predicted GDP.  In the South 
African context, about 80% of carbon emission derives from 
the energy sector, of which 50% is from electricity generation 
[2]. In-light of the above, there is a drive to further develop 
alternative sources of energy to feed the power generation 
industry to adequately respond to challenges of energy demand 
growth, high prices as well as the reduction of emissions. As 
such, in the search for alternative solutions, the Department of 
Mineral Resources and Energy of South Africa has embarked 
on a journey to diversify the energy supply for 2030 and 
beyond [2]. For instance, one of South African most attractive 
regions, the Upington region, with a recorded long-term annual 
average of 2816 kWh/m2 of Direct Normal Irradiance (DNI) 
and 2282 kWh/m2 of Global Horizontal Irradiance (GHI); is an 
under-utilized energy source that could potentially alleviate the 
strain on existing power plants because the area is exposed to 
relatively high solar irradiation that can greatly contribute to the 
power generation sector.[3] 

However, these regions are often characterized by a 
combination very little to no rain, which results in water 
shortages, and very high ambient temperatures. It is recorded 
that the annual average rain can be as little as 83.3 mm and 
ambient temperatures, reaching maximum of 45.3°C between 
1991 – 2020 [4]. The above constitutes a significant challenge 
when it comes to the design of effective heat rejection units for 
thermal power plants. The traditional steam Rankine cycle has 
been used for many years in thermal power generation for its 
ability to produce power at high efficiencies. In recent years, 
however, variations of the Brayton cycle are under 
investigation as they have shown potential for achieving 
competitive efficiencies, when operated using supercritical 
carbon dioxide (sCO2) as working fluid [5]. The density of 
sCO2 near the critical state resembles that of a liquid. Thus, the 
use of sCO2 in a Brayton cycle offers reduced compression 
power and increases the cycle’s overall efficiency [6]. In the 
early 2000s Dostal [7] investigated different sCO2 cycle layouts 
to discover that the recompression layout is the most efficient 
layout of all.  
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To further improve the performance of the sCO2 Brayton 
recompression cycle (BRC), it is important to analyse how the 
individual components can affect the overall efficiency. While 
there is much research on all the other power block 
components, there is unfortunately very limited research on 
heat rejection system design, as well as the impact of this 
system on the cycle’s overall performance. Most plants attempt 
to avoid operating near the critical point of sCO2 because the 
carbon dioxide thermo-physical properties are very sensitive to 
change in temperature or pressure is unstable in this region [8]. 
Specifically, there are rapid fluctuations in the fluid properties 
that affect the compressor performance. A 2℃ difference in the 
main compressor inlet temperature (CIT) can result in a 10% 
drop of adiabatic efficiency of the compressor [9]. Despite of 
the above, Ehsan [10] showed that if the CIT can be 35℃ or 
below, a BRC could operate at efficiencies higher than 49%. 
Attaining such lower temperature after the heat rejection unit in 
regions characterized by high ambient temperature as discussed 
earlier present many challenges; hence, it was recommended to 
investigate multiple cooling system designs to ensure delivery 
of CIT of below 35°C. Hence, for this study, a shell-and-tube 
heat exchanger (STHE) was identified as a suitable candidate 
due to its compactness, affordability, ability to sustain high 
pressure ranges and wide range of operating temperatures [11].  

2. Aim

The objective of this study is thus to investigate the dynamic 
response of a water-cooled sCO2 BRC for concentrated solar 
power (CSP) applications to simultaneous variations of solar 
resource, direct normal irradiation (DNI), and ambient 
temperatures. A previous study by Tshamala et al. [12], 
considered a concentrated solar powered sCO2 BRC fitted with 
inventory control system, subjected to daily variation of DNI. 
The above cycle was simulated to predict the required cooling 
capacity of the heat rejection unit that would maintain the CIT 
constant at 35°C. The inventory control, however, was 
introduced to regulate and maintain the turbine inlet 
temperature (TIT) through cycle’s mass flow rate control. 
Whilst the above study assumed a hypothetical heat rejection 
unit, in this study, a water-cooled shell-and-tube heat exchanger 
(STHE) is designed and integrated to the 1-D Flownex 
simulation model of the sCO2 BRC and daily ambient 
temperatures are used as input to the STHE. This STHE is 
designed to deliver a CIT ranging between 30 – 33°C, aiming at 
improving the power block overall efficiency. It is essential to 
highlight that since the study of the turbomachinery is not part 
of the current scope, the built 1-D model simulation model used 
centrifugal pumps in place of compressors; this was decided in 
anticipation that in the transcritical region the fluid exhibits 
liquid-like properties, especially as its temperature continues 

decrease [13]. Simulation of the complete power block is 
performed to determine the overall cycle dynamic response and 
performance assessment is presented. However, the current 
investigation assumes that the cooling water is provided at 
ambient wet-bulb temperature in the Upington. The designed 
STHE will be used in ongoing research which will consider 
performance assessment of dry, wet and hybrid systems in an 
indirect cooling configuration.    

3. sCO2 BRC cooling method and design.

3.1. Brayton Recompression Cycle description 
The original BC (Fig. 1) comprised three primary components. 
The compressor, combustion chamber and the turbine. 
Atmospheric air (State 1) would enter the compressor and be 
pressured to state 2 and then heated to state 3 to increase its 
specific volume to ensure greater power output in the turbine 
where it is expanded to state 4. After the turbine the exhaust gas 
is released into the atmosphere [6]. This is a very basic form of 
the BC when compared to the Brayton recompression cycle 
(BRC) (Fig. 2) which comprises two compressors, two 
recuperators, a turbine, a heater, and a cooler. The working 
fluid enters the main compressor (MC) at state 1 where the 
fluid is pressurised to state 2. The fluid is then heated in the low 
temperature recuperator (LTR) (2 – 3), as well as the high 
temperature recuperator (HTR) (4 – 5) using heat from the hot 
exhaust gases. 

Fig. 1. Original Brayton Cycle Layout 

Additional heat is added from an external source, CSP in this 
case, lifting the temperature to state 6 where the fluid enters the 
turbine. The fluid is expanded to state 7, producing work, and 
then directed into the HTR (7 – 8) and LTR (8 – 9) to reject 
heat. The fluid at state 9 splits into the cooler and the auxiliary 
compressor where a percentage of the fluid is pressurised to the 
cycle’s highest operating pressure. The remainder of the fluid is 
directed to the cooler (heat rejection unit), where it is cooled to 
targeted CIT (state 1) before returning to the main 
compressor.[14] 

84



3.2.  sCO2 BRC heat rejection unit 
The heat rejection unit is an essential part of any cyclic heat 
engine whose role is to ensure effective energy transfer from 
the heat engine to the surrounding. According to Carnot, 
operating the heat rejection unit at low temperatures may 
contribute to enhancing to the overall power cycle’s efficiency. 
Considering the above, a prior investigation was conducted to 
advise on the operating temperature of the sCO2. This 
investigation took foundation from Ehsan [10], revealed that 
the sCO2 BRC has the potential to achieve greater efficiencies 
for higher overall pressure ratios, around 2.5, for CITs ranging 
between 30 – 35 °C as showed in fig. 3 below. Therefore, 32 °C 
is used as targeted CIT for the heat rejection unit.   

Fig. 2. Brayton Recompression Cycle Layout. [14] 

Fig. 3. s-CO2 BRC efficiency and net power as function of 
pressure ratio CIT. [10]  

To determine the heat rejection cooling capacity, a Flownex 
simulation model of a 20 MW sCO2 BRC was built  and 
simulated by Tshamala et al. [12] using 32 °C as CIT. This 
simulation revealed that to maintain a constant 32 °C CIT in an 
environment affected by daily variations in DNI, the heat 
rejection unit should be able to effectively transfer 20.36 MW 
of heat. Thus, this cooling duty together with the heat rejection 

unit inlet temperatures and the CIT are therefore used to advise 
the design of the heat rejection unit heat exchanger.      

3.3. sCO2 BRC Shell-and-tube heat exchanger design 
considerations 

3.3.1. STHE physical configuration 
The current shell-and-tube heat exchanger (STHE) was sized 
using the approach prescribed in the Tubular Exchanger 
Manufacturers Association (TEMA) standards [15]. This 
approach is used to ensure compliance with best practices and 
safety regulations.  Hence, based on TEMA standards, the 
STHE design specifications such as shell type, tubes bundle 
type, tubes layout, tubes material, baffles type, spacing and cut, 
front-end head type, and rear-end type were selected as 
presented in Table 1. The above assisted to define to SHTE 
physical configuration. Choices resulting in the STHE physical 
layout are generally made with respect to specific criteria such 
as pressure requirements, cleaning method, cost of production, 
etc. However, for the purpose of the current STHE design, to 
maintain the carbon dioxide in supercritical region, the current 
design suggested to use 7.45 MPa as cycle’s lowest pressure 
[14]. This value has been arbitrary chosen to ensure that at all 
time, the carbon dioxide remain in supercritical conditions, and 
not too high to ensure relatively effective gas expansion in 
turbine.  This value will therefore be accounted for when 
selecting the tube size and thickness. 

Table 1. Selected heat exchanger [15] 

Front-end Head: B-type

Shell Type: E-type

Rear-end Head: S-type

Tube Bundle Type: Floating head type 

Baffle Type: Single segmental baffle 

Baffle Cut: 25% 

Baffle Spacing: 40% of the shell diameter 

Tube Fluid: sCO2 

Shell Fluid: H2O 

Tube Layout: 30° 

Tube Material: Copper 

3.3.2. STHE design methodology 
At this stage of the design process, the required cooling duty, 
the operating pressure of the STHE, the sCO2 inlet temperature 
to the STHE, and mass flowrate have been approximated based 
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on thermodynamic cycle analysis; the cooling water inlet 
temperature approximated to ambient wet bulb temperature, 
since we operate on the assumption that a wet cooling tower is 
used to refresh the cooling water. The desired sCO2 outlet 
temperature known (set to 32°C), and the sCO2 inlet 
temperature was set as 120°C which is the highest value 
established in Tshamala et al. [12]. The mass flowrate of the 
cooling water can be estimated using equations from basic heat 
transfer. The above assumed maximum 7 °C temperature 
difference between the inlet and the outlet temperature of the 
cooling water across the STHE [16]. Although both the e-NTU 
procedure as well as a LMTD method could be used for the 
sizing of the current STHE, for simplicity a decision for made 
to use only the LMTD method for sizing of the STHE. The 
above was done using equation (1) to define the overall heat 
transfer area.  

Q = UAoF ∆Tlm                (1) 

In the above equation (1), Q, U, A, F, and ∆Tlm represent the 
cooling duty, the overall heat transfer coefficient, the total heat 
transfer area, the temperature correction factor, and the mean 
log temperature difference across the STHE. Equation (2) was 
used to evaluate the temperature correction factor introduced in 
equation (1).        

F = 
�√R2+1� ln �1 - S

1-RS�

 (R-1) ln �
2 - S �R + 1 - √R2+ 1�
2 - S �R + 1 + √R2+1�

�
   (2) 

Where S is a measure of the temperature efficiency of the heat 
exchanger, and R is the thermal capacities ratio between the 
shell side and the tube side; calculated as below: 

R = TCO2in- TCO2out
Twout- Twin

  (3) and   S = Twout- Twin
TCO2in- Twin

(4)

With Twin, Twout, TsCO2in and TsCO2out representing the water inlet, 
water outlet, sCO2 inlet and sCO2 outlet temperatures 
respectively [17]. The ∆Tlm was obtained from the temperatures 
given above, while U, was estimated using an iterative 
approach. At first, both the shell-side and the tube-side heat 
transfer coefficients (hw and hsCO2) are guessed as 5000 W/m2K 
on shell-side (water) and 500 W/m2K (gas) on the tube-side 
[18]; using in conjunction equations (5) and (1), the heat 
transfer area Ao is obtained. In equation 3, the fouling 
resistances for both make-up water and sCO2 were 
approximated by Kakac et al. [18]. To define the tubes 
configuration, equations (6) and (7) were used to determine the 
number of tubes (NT) as well as shell diameter (Ds) of the 
STHE.  

Ufc
- 1 = 

1
hw

+ Rfs+ 
do

2 k
 ln �

do

di
�  + Rft + 

PR
hCO2

     (5) 

In equation 5, Rfs, Rft, k, di, do and PR are the shell-side fouling 
factor, the tube-side fouling factor, tube material thermal 
conductivity, the tubes inside diameter, tubes outside diameter 
and representing tube outside to inside diameter ratio.   

Ds = 0.637 �
CL

CTP
 �

Af SO PR2 do

LT
�

1
2�

 (6) 

Nt = round �0.785 
CTP
 CL

Ds
2

(PR do)2   �      (7) 

Where CL represents the tube layout constant; CTP, the tube 
count calculation constant; LT, the tubes active length, SO 
surface overdesign, and Af, the heat transfer areas. [18] 

According to literature, the optimum ratio between the tubes 
length and the shell diameter should be kept between 5 – 10, 
since it is a trade-off between the pressure drop on the shell 
side and manufacturing costs [18]. Engineering Equation 
Solver (EES) was used solve simultaneously all equations 
described in the model for variety of tube diameter. For each 
tube diameter, a parametric study was conducted to determine 
the corresponding tube length that would balance the heat 
transfer equation between the tube and shell sides of the STHE. 
The result of the parametric study is presented in Fig. 4 and 
Fig. 5, for only four diameters; hence for the purpose of this 
project a conservative approach suggested that a length-to-shell 
diameter of 5.31, using 22.225 mm tube outside diameter.[19] 

Fig. 4. STHE cooling capacity vs tube length for various 
tube diameters.

Fig. 5. STHE pressure drops vs tube length for various 
tube diameters. 
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In Fig. 4 above, the tube side heat transfer was found using the 
enthalpy change of sCO2 between the inlet and the outlet of the 
STHE, while the shell side heat exchanger was found using 
equation 1. The shell side heat transfer coefficient was obtained 
using equation 8, while equation 10 approximated the tube side 
heat transfer coefficient. [18] 

hwDe

kmw
=0.36 �

De Gw

μmw
�

0.55

 �
cpmw μmw

kmw
�

1
3�

 �
μmw

μw
�

0.14
   (8) 

De= 
4 �PT

2 √3
4  - π do

2

8 �

π do
2

  (9) 

hsCO2 = 
ksCO2

di

⎣
⎢
⎢
⎢
⎡fD

8  (ResCO2 - 1000) PrsCO2 �1 + �di
LT

�
0.67

�

1 + 12.7 �fD
8 �

0.5
 �PrsCO2

0.67 - 1�
⎦
⎥
⎥
⎥
⎤

   (10)

Where: 

fD=[0.79 ln(ResCO2) - 1.64]-2   (11)

In equation 8, De is the hydraulic diameter applicable on the 
shell side for triangular tube configuration, Gw is the water 
mass flux; cpmw, kmw, and μmw are the water specific heat, 
thermal conductivity, kinematic viscosity expressed at mean 
temperature respectively, μw  the water kinematic viscosity at 
well temperature. And in equation 10, fD represents the friction 
factor on the tube side; ResCO2, PrsCO2, and ksCO2 are the 
Reynolds number, the Prandtl number, and the thermal 
conductivity of sCO2, respectively. Hence, the results of the 
above approximation converged to 416.2 W/m2K on the tube-
side (hsCO2) and 10307 W/m2K on the shell-side (hw). The 
subscript m in the thermophysical properties refers to the 
thermophysical properties evaluated at mean temperature, while 
w refers to water. Although tube side pressure drops were not 
described as one of the driving factors of decision for STHE 
sizing, it was found necessary to estimate them and present 
them in Fig. 6 below (Tube side of Fig.5 enhanced).  

Fig. 6. STHE tube side pressure drops vs tube length for 
various tube diameters. 

From Fig 5 and Fig. 6, it could be seen that at 22.225 mm tube 
outside diameter and 9.95 m tube length, the corresponding 
pressure drops on the shell side and the tube are 1.4 MPa and 
2.5 kPa. 

For the rating of the designed STHE, five methods were 
investigated, including the traditional e-NTU, the Kern, the 
Taborek, the Bell, and the Bell Delaware. It was found that 
although the first four could approximate the heat transfer 
coefficient and pressure drops with reasonable accuracy, the 
Bell Delaware method considers most of the fluid complexities 
as the fluid passes for baffle to tubes and vice versa, hence was 
found to be the most accurate. [20] 

3.3.3. STHE rating – The Bell Delaware method 
This method suggests that the designer initially start by 
estimating the tube size, the tube length, the heat transfer 
coefficient, the baffle spacing as well as the pitch ratio. Using 
an iterative approach, the pressure drops as well as the heat 
transfer coefficient was computed iteratively to convergence for 
the shell side fluid flow as well as the tube side fluid flow with 
the equations listed in Table 2. This process was repeated for a 
variety of tube sizes and lengths to approximate the appropriate 
heat exchanger dimensions.  

Table 2. Pressure drop and heat transfer equations [18] 

Shell Side (Water) 
Pressure 
drops: 

∆Ps= 
fs Gw

2 Ds (Nb+1)
2 ρmw De Φs

  (12) 

Heat transfer 
coefficient: 

hB = hid Jc Jl Jb Js Jr   (13) 
Where: 

hid=Ji cpmw Gw �
kmw

cpmwμmw
�

2
3�

Φs        (14)  

Tube side (sCO2) 
Pressure 
drops: 

ΔPft= �
4 fD NP LT

di
 + 4 NP�

GCO2
2

2 ρmCO2
  (15) 

Heat transfer 
coefficient Use equations 10 and 11 

In table 2, fs, Nb, Φs, ρmw, NP, GCO2, and ρmCO2 are shell-side 
friction factor, number of baffles, water density at mean 
temperature, number of tube passes, carbon dioxide mass flux, 
and carbon dioxide mean density. Ji, Jc, Jl, Jb, Js, and Jr are the 
corresponding correction factors for Colburn j-factor, baffle cut 
and spacing, baffle leakage, baffle spacing at inlet/outlet, 
bundle bypassing and Reynolds number correction.  
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4. Sensitivity analysis and cycle simulation

This simulation was done in Flownex. It was also important to 
determine whether the designed heat exchanger could maintain 
the temperature in the specified range. Table 3 presents overall 
cycle performance for CIT of 32 °C which is within the 
recommended target and 35 °C which aligned with the model 
verification discussed in the previous project [12].   

Table 3 values were obtained through steady state simulation of 
the sCO2 BRC assuming CIT at 35°C and at 32°C, for 
10.4 MW and 20 MW net power. Table 3 values were obtained 
through steady state simulation of the sCO2 BRC assuming CIT 
at 35°C and at 32°C, for 10.4 MW and 20 MW net power. 
Hence, to run the dynamic simulation of the complete cycle, it 
was necessary to integrate the designed STHE to the steady 
state model and implement variations in the solar DNI, ambient 
air temperature and wet bulb temperature. 

Table 3. s-CO2 BRC simulation model results 

Targeted CIT [°C] / 
Plant size [MW] 

35 / 
10.4 

35 / 
20 

32 / 
20 

MC Power [MW] 1.87 3.61 3.27 

AC Power [MW] 2.31 4.44 4.35 

Turbine Power [MW] 14.59 28.05 27.57 

Net Power [MW] 10.44 20.00 19.87 

Heat input [MW] 21.78 41.88 40.23 

Efficiency [%] 47.76 47.77 49.4 

Cooling Duty [MW] 11.34 21.88 20.36 

The solar DNI was obtained from SOLARGIS, while the 
ambient air temperature as well as wet bulb temperature were 
sourced from the South African weather services for a typical 
hot day of the year 2022.  

At this stage, it is necessary to specify that the sizing discussed 
in section 3 allowed to determine all other dimensions of the 
STHE as shown in Table 4. Information provided in Table 4 are 
used to build the STHE in Flownex, and the STHE simulation 
model was integrated in the sCO2 BRC to close the loop and 
finally enabling the overall cycle dynamic response analysis.  

Table 4. STHE design characteristics 

Tube Outer Diameter (𝑑𝑑𝑜𝑜) mm 22.225 

Tube pitch ratio (𝑃𝑃𝑃𝑃) - 1.25 

Tube Inner Diameter (𝑑𝑑𝑖𝑖) mm 17.78 

Tube Length (𝐿𝐿𝑇𝑇) m 16 

Tube Pitch (𝑃𝑃𝑇𝑇) mm 27.78 

Baffle Cut (BC) % 25 

Number of Tubes (𝑁𝑁𝑇𝑇) - 4258 

Shell Diameter (𝐷𝐷𝑆𝑆) m 2 

5. Results and discussion

Two scenarios were investigated. The first being the ideal 
scenario where the heat input to the cycle was constant and 
secondly the heat input to the cycle was allowed to track the 
daily variation of the DNI. The 20 MW net power solarized 
sCO2 BRC was designed using a solar field capable of 
supplying 44 MW thermal as peak capacity while for the 
second simulation, the cycle heat addition was simulated using 
the DNI and ambient temperature daily profiles. In both cases, 
the cooling water mass flow rate is maintained constant, and its 
temperature was approximated to the daily variation of the wet 
bulb temperature in the Upington. According to Uvarov et al. 
[21], knowing the ambient temperature, one could approximate 
the wet bulb temperature; however, for the current simulation 
this temperature was measured and supplied by the SAWS. A 
varying ambient temperature for a typical hot day in Upington, 
March 10th, 2022, was used. The results of both simulations are 
shown and discussed in the next few paragraphs. 

With the first scenario (Figure 5 and 6), it can be observed that 
the heat exchanger can deliver a CIT ranging within the 
recommended values. The produced net power and the cycle 
efficiency are close to the predicted steady state values, 
20.7 MW and 46% for mass flow rate approaching the designed 
maximum mass flow rate for the turbine used. The sCO2 mass 
flow distribution between the two compressors depends on the 
split ratio (SR), which is the ratio of the secondary compressor 
mass flow to the total mass flow in the turbine. For this case, 
the SR fluctuates at about 30%. Regardless of the wet bulb 
temperature hourly variations, the CIT was effectively 
maintained to a maximum of 31.6 °C, which is well below the 
35 °C where sCO2 properties become unstable.  
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Fig. 5. Cycle efficiency, Net power, Main compressor mass 
flow, and turbine mass flow for constant heat load 

Fig. 6. CIT, Cooling water inlet temperature and STHE 
sCO2 inlet temperature for constant heat load 

The efficiency curve of the original cycle with the CIT of 35 ℃ 
is shown in Figure 7. This graph shows that at 35 °C CIT, the 
efficiency was recorded as 45.6% regardless of the DNI 
variation (Heat input). This efficiency slightly increased to 
about 46% when the CIT drops to 31.6 °C. according to 
literature, the efficiency is expected to be at its best value at 
33 °C. [10] 

Fig. 7. Heat input, Net power, Efficiency for 35°C CIT 
cycle [12]. 

However, in the study of efficiency increase, two other 
parameters are critical to ensure best values. Figure 8, discussed 
by Ehsan [10] shows that there is a strong correlation between 
the split ratio with the cycle thermal efficiency, which was not 
part of the current investigation. Hence, it is believed that 
pressure ratio and split ratio may play a significant role for the 
efficiency improvement to achieve performances predicted in 
Ehsan [10] as it can be seen in Figure 8. 

Fig. 8. Thermal efficiency variation with split ratio and 
pressure ratio of a sCO2 BRC [10] 

The second scenario, the full dynamic simulation of the sCO2 
BRC power block with STHE integrated to the loop, was 
performed using input variables presented in Figure 9. The 
ambient temperature and the DNI were used to estimate the 
heat input to the system, while the wet bulb temperature is used 
as input at the STHE, representing the heat rejection unit.  

Figure 10 is a display of the full cycle response to variation in 
weather conditions and solar energy. The efficiency still starts 
at 6am at 47% but slightly decreases to 46% when the full heat 
input is applied, then rises again as the heat input decreases. 
Many reasons could be responsible for the observed changes, 
since operating with many variables. However, the heat input 
variations can be highlighted as one of the many reasons. As 
the heat input increases, the turbine inlet temperature (TIT) in 
figure 11 tends to rise, however, the inventory control system 
constantly attempts to maintain the TIT at 700 °C by adjusting 
the total mass flow through the turbine. The above is believed 
to be the main reason for severe fluctuations observed in the 
TIT as well as the efficiency from around 13h00 through the 
after until sunset as shown in figure 11. 

89



Fig. 9. Upington selected DNI, ambient temperature and 
wet bulb temperature [22] [4] 

Fig. 10. sCO2 BRC cycle efficiency and net power for 
variable heat load 

In figure 10, the heat input is observed to rise as the day 
progresses in the morning times and decreases progressively in 
the afternoon. With it, the net power of the cycle increases to 
reach the power block’s rated capacity when the heat input 
reaches it maximum. On the heat rejection site, it can be 
observed in figure 12 that the cooling load also follows the heat 
input trend, with a little deviation due to ambient conditions 
changes.  

Another important observation is made on the CIT which starts 
just about 26 °C (compressed liquid), then increases, reaching 
its maximum when the heat input reaches its maximum, then 
decreases progressively in the afternoon. The above is due to a 
combined effect of the variation of the sCO2 mass flow in the 
cycle induced by the inventory control system, the low wet bulb 
temperature early in the day and late in the afternoon, as well as 
the unchanged mass flow of the cooling water through the 
STHE for the duration of the simulations. Figure 11 also shows 
the STHE sCO2 inlet temperature, which changes because of 
feedback introduced by the STHE in the cycle. 

.

Fig. 11. Turbine inlet temperature, CIT, STHE sCO2 inlet 
temperature and ambient temperature fluctuations for 

variable heat load. 

Fig. 12. STHE cooling load, mass flow through the turbine 
and main compressor variation for variable heat load. 

6. Conclusion

The aim of this project was to design a STHE with capacity to 
service a sCO2 BRC powered by CSP, then investigate the 
overall cycle dynamic response to variable heat input as well as 
ambient temperatures. A water cooled STHE was designed 
using the traditional mean-log temperature difference approach 
during the first iteration sizing, which was enhanced using the 
Kern approach to refine the optimum dimensions, and Bell-
Delaware considered for rating. Industry recommendations 
were used to make final decisions on the STHE design 
parameters accounting for the balance between manufacturing 
cost and pressure losses. The designed heat exchanger was then 
used in a simulation of a sCO2 BRC at both constant heat load 
as well as variable heat load. The simulation results of the sCO2 
BRC have shown that the designed STHE adequately 
performed, maintaining the CIT below 32 °C, however the 
efficiency remained lower than the targeted 52%. The above 
revealed that decreasing the CIT alone is necessary to enhance 
the stability of the power cycle, however other aspects such the 
pressure ratio and split ratio are critical to further improve the 
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overall cycle efficiency. 
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Abstract: Five clear-sky models have been investigated to 
determine the accuracy of the model to fit the calculated solar 
irradiance measured over an eight-year period (2014-2021). The 
main forms of solar irradiance that were investigated were: 
Direct normal irradiance (DNI), which is used in solar PV and 
CSP, Diffuse horizontal irradiance (DHI) and Global horizontal 
irradiance (GHI), which are important for solar PV systems. The 
Haurwitz, Chràcicki, Meinel, Power law, and Logarithmic 
(newly proposed) models were used to investigate GHI, the 
Archer, Sharma, Meinel, Power law, and Logarithmic models for 
DNI; and the ASHRAE, Power law, Fritz, Daneshyar, and 
Logarithmic (newly proposed) models for DHI. All models are 
regarded as simple clear-sky models due to only depending on 
the zenith angle and having two scaling parameters used for 
linear regression analysis. The data, measured at one-minute 
intervals, was taken from the five stations (Richtersveld, 
Vanrhynsdorp, Graaff-Reinet, Gaborone, and Windhoek) found 
in South Africa, Namibia and Botswana which were supplied by 
the SAURAN network. The influence of station elevation will 
also be evaluated. 

Keywords: solar irradiance; solar models; solar irradiance 
components; airmass. 

1. Introduction

Research into renewable energy has increased over the last 
decade as countries around the world are looking for more 
sustainable ways of generating electricity. In 2020 South Africa 
was the 7th largest coal producer in the world and 85% of its 
electricity was produced from coal plants. With the trend away 
from coal due to the impact carbon emissions have on climate 
change, the country has begun to consider more eco-friendly 
ways of decreasing the amount of strain placed onto the grid [1]. 

South Africa receives solar radiation of 2.4 MWh/m2 per annum 
at its sunniest locations in the country’s north west, and even the 
areas with the least sunshine, along the southern and eastern 

coastal belt, get as much as 1.5 MWh/m2 solar radiation per 
annum [2], thus making solar energy a very effective source of 
renewable energy. Understanding the solar resource is important 
for the optimization of solar energy production, and this can be 
achieved through the application of simple solar irradiance 
models. Electricity is largely generated from solar energy in two 
forms in South Africa: photovoltaic systems and thermal 
concentrated solar power [3]. The performance of these systems 
can be estimated from the solar irradiance. Solar irradiance has 
traditionally been represented by three interlinked quantities: 
Global, Direct and Diffuse Irradiance. 

2. Solar irradiance modelling

2.1. Airmass 

When solar radiation travels through the earth’s atmosphere, the 
radiation encounters molecules and particles with different 
optical properties and varying concentrations. The ratio of the 
path travelled by the solar beam through the atmosphere relative 
to the vertical path is known as the airmass. 

Assuming that the effect due to the earth’s curvature is 
negligible, the relative airmass m is defined in terms of the solar 
zenith angle ζ as follows: 

m =
1

cos ζ
     (1) 

This quantity should not be confused with the absolute airmass, 
which is obtained by multiplying m by the ratio of the site 
atmospheric pressure to the sea level atmospheric pressure. 

2.2. Solar irradiance types 

The total amount of solar radiation which is incident on a 
horizontal surface on the earth is referred to as the Global 
Horizontal Irradiance (GHI). 

This is made up of two components (see eq.3, [4]). Firstly, there 
is the fraction of solar beam radiation that reaches the surface 

92



after attenuation in the atmosphere. When measured in the 
direction towards the Sun this is referred to as Direct Normal 
Irradiance (DNI). Then there are the photons which experienced 
scattering by gases and aerosols (dust, pollen, water vapour, etc.) 
in the earth’s atmosphere and are now directed towards the 
detector from all parts of the sky. When measured on a horizontal 
surface this is referred to as Diffuse Horizontal Irradiance (DHI). 

These three measures of irradiance are related to each other by 
the equation: 

G = B cos ζ +D   (2) 

where G, B, D represent the GHI, DNI and DHI respectively. 

If we define the above equations in terms of the airmass m and 
the irradiance at the top of the atmosphere B0, equation 2 can be 
expressed as follows: 

𝐺𝑚

𝐵

 = 
𝐵

𝐵

+
𝐷𝑚

𝐵

  (3) 

2.3. Existing solar irradiance models. 

Comprehensive lists of solar irradiance models of varying 
degrees of complexity have been summarised elsewhere [5, 6]. 
This study specifically restricts itself to models where the 
irradiance only depends on one easily determinable variable, the 
solar zenith angle. Furthermore, our models all contain a 
maximum of two parameters that should be constant for set 
heights above sea level provided skies are aerosol-free. These 
parameters can however be expected to vary mildly with altitude 
above sea level and atmospheric turbidity. Such models are very 
basic and have for most purposes been superseded by advanced 
models with many more parameters that may also depend on 
further meteorological variables like temperature and humidity. 
The one variable, two parameter models explored in this study 
are however still very useful precisely because of their simplicity 
if they can reproduce measured irradiance reasonably. This is 
because meteorological measurements are often not available, 
and because their straightforward mathematical formulation 
eases computational application. 

The solar irradiance models examined in this study are listed and 
defined in Table 1. The form of the model equations and the 
associated analytic tools are well illustrated by the example of 
the Haurwitz model for GHI [7]: 

𝐺 = 𝐵𝐴𝑒ି  cos ζ       (4) 

Each model is defined by two scaling parameters, A and q. The 
amplitude parameter A defines the vertical scale of the irradiance 
fitted by model and q defines the spread of the model. The exact 
significance of these two parameters however varies from model 
to model. For example, in the Haurwitz model defined by 
Equation 4, q is a measure of the turbidity, while A would be the 

fraction G/B0 at the zenith as the turbidity tends to zero. 

Table 1. Irradiance models investigated. 

Model name Model equation 

GHI models 

Haurwitz [7] 𝐺𝑚 𝐵⁄ = 𝐴 𝑒ି 

Chràcicki [8] 𝐺𝑚 𝐵⁄   = 𝐴 (1 + 𝑞𝑚)⁄

Meinel [9] 𝐺𝑚 𝐵⁄ = 𝐴

Power law [10] 𝐺𝑚 𝐵⁄  = A mq

Logarithmic 𝐺𝑚 𝐵⁄ = 𝐴 − 𝑞 ln 𝑚 

DNI models 

Archer [11] 𝐵 𝐵⁄ = 𝐴 eି 

Sharma [12] 𝐵 𝐵⁄ = 𝐴 (1 + 𝑞𝑚)⁄

Meinel [9] 𝐵 𝐵⁄ = 𝐴mq

Power law [10] 𝐵 𝐵⁄ = A mq

Logarithmic [13] 𝐵 𝐵⁄ = 𝐴 − 𝑞 ln 𝑚 

DHI models 

Power law [10] 𝐷𝑚 𝐵⁄ = 𝐴 mq

ASHRAE [14] 𝐷𝑚 𝐵⁄  = Am 𝑒ି 

Fritz [15] 𝐷𝑚 𝐵⁄  = 𝐴(1 − 𝑒ି) 

Daneshyar [16] 𝐷𝑚 𝐵⁄ = 𝐴𝑚(1 − 𝑞 secିଵ 𝑚)

Logarithmic 𝐷𝑚 𝐵⁄  = 𝐴 − 𝑞 ln 𝑚 

Linearizing Equation 4 by taking logarithm on both sides and 
substituting the definition of the airmass, we get the expression: 

ln
𝐺𝑚

𝐵

 =  − 𝑞𝑚  + ln 𝐴     (5) 

A standard linear regression analysis of a plot of the measured 
ln(Gm/B0) vs. m thus yields a slope of –q and a y-intercept ln A, 
from which q and A can immediately be determined. Similar 
linearization can also be constructed for the other relationships 
given in Table 1, from which the A and q parameters for the other 
models are then derived accordingly. 

2.4. New proposed Logarithmic model 

We also tested a model that has seemingly never been proposed 
before, given by: 

𝐺 (or 𝐷)  =  𝐵(𝐴 − 𝑞 ln 𝑚) cos 𝜁      (7) 

This model appeared suitable to describe both GHI and DHI, and 
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bears the same form as a model suggested for DNI by Williams 
[15]. We will refer to this form as Logarithmic models. Here the 
scaling parameter A represents the fraction of G, B or D to the top 
of the atmosphere irradiance B0 when the sun is directly 
overhead (i.e. m = 1). As in other models, the q-parameter 
defines the shape of the decline in the irradiance with the change 
in airmass. 

3. Data and methodology

3.1. The SAURAN network 

The solar irradiance data for this project was obtained from the 
Southern African Universities Radiometric Network 
(SAURAN) [17]. Most stations belonging to this network collect 
both radiometric data (GHI, DHI, DNI) and meteorological data 
such as site temperature and atmospheric pressure. The data, 
which normally has a resolution of 1 minute, can be freely 
downloaded from the SAURAN website.  

The instruments used to collect solar irradiance on the SAURAN 
network are as follows: A radiometer mounted on a SOLYS 
tracker including a CHP1 pyrheliometer, to measure DNI. A 
CMP11 pyranometer under a shading ball which measures the 
DHI, while an exposed CMP11 pyranometer measures the GHI 
[17]. If required, DNI can also be calculated from the GHI and 
DHI using Equation 2. Given that measurement uncertainties, 
multiple scattering, refraction and horizon topography all 
significantly degrade irradiance data quality near sunrise and 
sunset, we only used irradiance measurements taken where the 
solar zenith angle ζ did not exceed 80°. 

We estimated the random error in the GHI and DHI data to be 
0.1% and 0.3% respectively by determining the fluctuations in 
the 20-minute period around noon, when the change in solar 
zenith angle is minimal. Systematic errors caused by sensitivity 
degradation and similar effects are likely to exceed these 
amounts, and may account for some of the offsets of the 
parameters for each site derived later. 

3.2. Site and day selection 

We chose five sites in areas known to have above-average solar 
irradiance that had data archives spanning several years, and that 
furthermore spread over a wide range of altitudes above sea 
level. The selected sites are listed in Table 2. Exact site 
coordinates are available on the SAURAN website. 

We identified approximately 20 clear days for each site where 
visual inspection of the irradiance curves over the course of the 
day suggested minimal losses due to cloud or other solar beam 
interference. An example of the days meeting these criteria is 
illustrated in Figure 1. 

Table 2. SAURAN stations selected for this study with their 
altitude above sea level. 

Station name Country  Site coordinates Altitude 

Richtersveld S. Africa 16.761E, 28.561S 141 m 

Vanrhynsdorp S. Africa 18.738E, 31.617S 130 m 

Graaff Reinet S. Africa 24.586E, 32.485S 660 m 

Gaborone Botswana 25.934E, 24.661S 1014 m 

Windhoek Namibia 17.075E, 22.565S 1683 m 

Fig. 1. GHI, DHI and DNI plots: Graaff Reinet, 03/02/22 

We note that, despite the cloud-free conditions, some days 
experienced high aerosol concentrations, which weaken the DNI, 
but also increase the DHI. This is best exhibited by comparing 
the behaviour of the DHI over time for various days, as is done 
in Figure 2, where the amplitude and irregularity of this 
irradiance form clearly points to higher aerosol levels. 

Fig. 2. Daily DHI curves from the Richtersveld station. 
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4. Results

For each considered day and site, we plotted the graphs for the 
quantities projected to be linearly related according to each of 
the model formulae in Table 1 and determined the model 
parameters A and q for that daily data set accordingly. Examples 
of these plots are illustrated in Figures 3-9. We furthermore 
determined the correlation statistic R2 for each graph, which is 
an indicator of the goodness of the fit with a linear relationship. 
Averages over all days at a station, as well as the combined 
average R2 for each model, are detailed in Table 3. 

Fig. 3. GHI Logarithmic model fit: Graaff Reinet, 03/02/22 

Fig. 4. DNI Logarithmic model fit: Graaff Reinet, 03/02/22 

In Figures 3-5, we illustrate the performance of the new 
Logarithmic model for GHI, DNI and DHI. While the model at 
least matches and to some extent even exceeds the performance 
of the relatively widely used power law model (see Figures 6-8), 
it does not attain the superb fits achieved with the two models 
that this study finds to be the best suited for the GHI and DNI, 

Fig. 5. DHI Logarithmic model fit: Graaff Reinet, 03/02/22 

Fig. 6. GHI Power law model fit: Graaff Reinet, 03/02/22 

Fig. 7. DNI Power law fit: Graaff Reinet, 03/02/22 

which are the Meinel model (see Figure 9) and the Chràcicki / 
Sharma model. For the diffuse irradiance, however, the 
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Logarithmic model performed best of all models studied here. 

Fig. 8. DNI Power law model fit: Graaff Reinet, 03/02/22 

Fig. 9. DNI Meinel model fit: Graaff Reinet, 03/02/22 

After determining the average A and q parameters for each site, 
we plotted these as a function of altitude above sea level for all 
models. Examples of these plots, here for the Logarithmic model 
parameters, are shown in Figures 10 and 11. These display a 
clear trend for almost every model, as expected. The offset of the 
point at 1014 m representing Gaborone is due to higher levels of 
aerosols there. The analysis of these plots and the full 
dependence of these parameters on height above sea level and 
turbidity will form the subject of another paper. 

5. Discussion

This study builds on a growing number of initiatives to 
characterise the solar irradiance over Southern Africa, the impact 
of which is important for establishing the local solar energy 
resource. While previous studies have often focused on the 
global irradiance [18, 19, 20], we have here also attempted to 
establish the most suitable basic models for the DNI and DHI. 

Table 3. R2 average value of the model plots. 

Station name  Global Horizontal Irradiance 

Haurwitz Chràcicki  Meinel Power Logarithmic 

Richtersveld 0.9878 0.9936 0.9967 0.9865 0.9933 

Vanrhynsdorp 0.9892 0.9941 0.9961 0.9830 0.9905 

Graaff Reinet 0.9879 0.9939 0.9961 0.9844 0.9919 

Gaborone 0.9901 0.9947 0.9938 0.9775 0.9869 

Windhoek 0.9865 0.9926 0.9953 0.9830 0.9896 

average R2  0.9883 0.9938 0.9956 0.9829 0.9904 

Direct Normal Irradiance 

Archer Sharma Meinel Power Logarithmic 

Richtersveld 0.9878 0.9910 0.9938 0.9779 0.9910 

Vanrhynsdorp 0.9909 0.9959 0.9962 0.9815 0.9926 

Graaff-Reinet 0.9868 0.9902 0.9932 0.9754 0.9888 

Gaborone 0.9888 0.9917 0.9933 0.9739 0.9892 

Windhoek 0.9876 0.9937 0.9939 0.9785 0.9895 

average R2  0.9884 0.9925 0.9941 0.9774 0.9902 

Diffuse Horizontal Irradiance 

ASHRAE Power 
law 

Fritz Daneshyar Logarithmic 

Richtersveld 0.9463 0.9650 0.9143 0.8834 0.9685 

Vanrhynsdorp 0.9339 0.9649 0.9057 0.8773 0.9636 

Graaff-Reinet 0.9160 0.9615 0.8978 0.7979 0.9583 

Gaborone 0.9525 0.9669 0.9155 0.8932 0.9709 

Windhoek 0.9377 0.9660 0.9136 0.8186 0.9764 

average R2 0.9373 0.9648 0.9094 0.8541 0.9676 

Fig. 10. Average scaling parameter q vs station elevation for 
the GHI Logarithmic model 
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Fig. 11. Average amplitude scaling parameter A vs station 
elevation for the GHI Logarithmic model 

The Meinel model provides the best model fits for GHI and DNI 
with very high correlation R2 values of 0.996 and 0.994 
respectively. The performances of the Chràcicki model and the 
mathematically similar Sharma models follow very closely to the 
Meinel models in accuracy, and these three models are hereby 
confirmed as the recommended models of a simple formulation 
for describing the global and direct irradiance. The newly 
proposed Logarithmic model did best when modelling for DHI, 
with an R2 value of just under 0.971. As seen in Figure 5, the 
lower correlation is not so much due to lack of linearity, but 
rather caused by small-scale fluctuations that are in part probably 
also due to the much lower photon counts. The model itself 
describes the overall relationship between the DHI and the 
airmass quite well. The Power law model performed noticeably 
worse for GHI and DNI than even the Logarithmic model, which 
is perhaps surprising given its comparatively wide usage. The 
Daneshyar model performed the worst for DHI with an R2 value 
of only 0.854. This model was formulated based on irradiance 
data collected in Tehran, Iran, [16] a site expected to exhibit 
evidence of high dust levels and smog, so it is not surprising that 
the relationships displayed there are dissimilar to what obtains at 
much clearer localities. Out of all the simple clear sky solar 
irradiance models, the DHI models exhibited the lowest degree 
of correlation. This is not unexpected, due to the assumptions 
made when simplifying the Rayleigh and Mie scattering 
equations to make the models computable. The overall 
satisfactory fits obtained with the Logarithmic models show that 
this class offers a suitable alternative to the currently established 
models. 

Considering the thinner atmosphere above the sites at greater 
altitude above sea level, as well as the nature of the A parameter 
as a vertical scaling factor (which was the case for all models), it 
was expected that the latter would increase with increased 
elevation. This was found to be true for all stations apart from 

the Gaborone station which had lower scaling parameter values 
than expected. When analysing this, it was found that Gaborone 
had the highest scatter in the values for A, whereas Richtersveld 
had the highest scatter for the q scaling parameter. We also note 
that these two stations exhibited higher DHI values compared to 
the other stations (90-140 W/m2), as shown in Figure 2. The 
higher level of aerosol concentration in Richtersveld is due to the 
station being located in the desert [21] while Gaborone is in a 
semi-desert region. The cause for these elevated aerosol levels is 
still being investigated. This shows that other factors such as 
aerosol concentrations and geographical altitude should be taken 
into consideration in addition to cloud coverage when 
establishing defining clear day model parameters. 

6. Conclusion

Our analysis shows the Meinel model to perform best when 
modelling for GHI and DNI, closely followed by the Chràcicki 
model for GHI and the analogous Sharma model for the DNI. 
The newly proposed Logarithmic model performs best when 
modelling for DHI. The Power law and Haurwitz / Archer 
models are shown to be less effective, but still usable. The 
ASHRAE, Fritz and Danyeshar models, which were developed 
as fits to DHI data that was likely strongly affected by aerosols, 
do not match the clean sky DHI nearly as well as the other 
models examined. 

Acknowledgements 

We gratefully acknowledge use of the data generated by the 
Southern African Universities Radiometric Network 
(SAURAN). 

References 

[1] O. K. Akinbami, S. R. Oke, O. M. Bodunrin, “The state of
renewable energy development in South Africa: An overview”
Alexandria Engineering Journal, vol. 60, pp. 5077–5093, 2021.

[2] J. G. Wright, T. Bischof-Niemz, J. R. Calitz, C. Mushwana, R. van
Heerden, “Long-term electricity sector expansion planning: A
unique opportunity for a least cost energy transition in South
Africa”, Renewable Energy Focus, vol. 30, pp. 21-57, 2019.

[3] J. G. Wright, J. R. Calitz, “Statistics of utility-scale power
generation in South Africa”, CSIR [http://hdl.handle.net/10204/
11865], 2021.

[4] H. Winkler, “The suitability of clear sky diffuse irradiance models
for South African atmospheric conditions” in South African Solar
Energy Conference, Durban, 2018.

[5] V. Badescu, C. A. Gueymard, S. Cheval, C. Oprea, M. Baciu, et
al., “Computing global and diffuse solar hourly irradiation on clear
sky. Review and testing of 54 models”, Renewable and Sustainable 
Energy Reviews, vol. 16, pp. 1636-1656, 2021.

[6] F. Antonanzas-Torres, R. Urraca, J. Polo, O. Perpiñán-Lamigueiro,
R. Escobar, “Clear sky solar irradiance models: A review of 
seventy models”, Renewable and Sustainable Energy Reviews, vol.
107, pp. 374-387, 2019.

[7] B. Haurwitz, “Insolation in relation to cloudiness and cloud
density”, J. Meteorology, vol. 2, pp. 154-166, 1945.

97



[8] W. Chràcicki, “Solar climate of the Swedish territory. Selected
problems”, Tellus, vol. 23, pp. 232-246, 1971.

[9] Meinel A.B., Meinel M.P., (1976). ‘Applied Solar Energy: An
Introduction. Addison-Wesley series in physics, Addison-Wesley
Publishing Company’.

[10] A. J. Biga, R. Rosa, “Contribution to the study of the solar radiation
climate of Lisbon”, Solar Energy, vol. 23, pp. 61-67, 1979.

[11] R. E. Schultze, ‘A physically based method of estimating solar
radiation from sun cards”, Agric. Meteorol., vol. 16, pp. 85-101,
1976.

[12] M. R. Sharma, R. S. Pal, “Interrelationships between total, direct,
and diffuse radiation in the tropics”, Solar Energy, vol. 9, pp. 183-
192, 1965.

[13] J. G. Williams, “Change in the transmissivity parameter with
atmospheric pathlength”, J. Appl. Meteorol., vol. 15, pp. 1321-
1323, 1979.

[14] ASHRAE, “Handbook of Fundamentals. American Society of
Heating, Refrigerating and Air-Conditioning Engineers”, 1972.

[15] L. D. Williams, R. G. Barry, J. T. Andrews, “Application of 
computed global radiation for areas of high relief”, J. Appl.
Meteorol., vol. 11, pp. 526-533, 1972.

[16] M. Daneshyar, “Solar radiation statistics for Iran”, Solar Energy,
vol. 21, pp. 345-349, 1978.

[17] M. J. Brooks, S. Du Clou, W. L. van Niekerk, P. Gauché, C.
Leonard, et al., “SAURAN: A new resource for solar radiometric
data in Southern Africa”, J. Energy Southern Africa, vol. 26, pp. 2-
10, 2015.

[18] E. Zhandire, “Predicting clear-sky global horizontal irradiance at
eight locations in South Africa using four models”, J. Energy
Southern Africa, vol. 28, issue 4, pp. 77-86, Nov 2017.

[19] L. Javu, H. Winkler, K. Roro, “Validating clear–sky irradiance
models in 5 South African locations”, in South African Solar
Energy Conference, Mpekweni, 2019.

[20] B. Mabasa, M. D. Lysko, H. Tazvinga, N. Zwane, S. J. Moloi, “The 
performance assessment of six Global Horizontal Irradiance clear
sky models in six climatological regions in South Africa”.
Energies, vol. 14, 2583, 2021.

[21] R. Román, M. Antón, A. Valenzuela, J. E. Gil, H. Lyamani, et al.,
“Evaluation of the desert dust effects on global, direct and diffuse
spectral ultraviolet irradiance”, Tellus B: Chemical and Physical
Meteorology, vol. 65, issue 1, 19578, 2013.

98



COMPARISON AND VALIDATION AGAINST IN-SITU MEASUREMENTS OF THE
SARAH-3 SOLAR IRRADIANCE SATELLITE ESTIMATES OVER THE SOUTH

WEST INDIAN OCEAN

Christella Igihozo1, Béatrice Morel2, Mathieu Delsaut3, Chao Tang4, Patrick Jeanty5, Morgane Goulain6, Jörg Trentmann7,
Jean-Pierre Chabriat8, and Amine Ouhechou9

1 University of Reunion, ENERGY-Lab, 20 avenue Hippolyte Foucque 97744 St Denis Cedex 9, Reunion Island (France);

Phone: +33779714669; E-mail: igihchrist01@gmail.com
2 University of Reunion, ENERGY-Lab, 15 avenue René Cassin CS 92003 97744 St Denis Cedex 9, Reunion Island (France);

Phone: +26226293822; Fax: +262262938673; E-Mail: beatrice.morel@univ-reunion.fr
3 University of Reunion, ENERGY-Lab; E-mail: mathieu.delsaut@univ-reunion.fr

4 University of Reunion, ENERGY-Lab; E-mail: chao.tang@univ-reunion.fr
5 University of Reunion, ENERGY-Lab; E-mail: patrick.jeanty@univ-reunion.fr
6 SPL Horizon Reunion; E-mail: morgane.goulain@spl-horizonreunion.com

7 Deutscher Wetterdienst; E-mail: joerg.trentmann@dwd.de
8University of Reunion, ENERGY-Lab; E-mail: jean-pierre.chabriat@univ-reunion.fr

9University of Grenoble;E-mail: amine.ouhechou@univ-grenoble-alpes.fr

Abstract: The solar resource has by far the highest energy
potential on Earth, leading to an increased attention to
climate data sets of surface solar radiation (SSR) as an
important source of information for solar energy assessment.
Such an assessment is essential for solar energy project
policy and planning. The present work aims to evaluate the
skill of satellite-based estimates of solar global horizontal
irradiance (GHI) from the new “Surface Solar Radiation
Data Set–Heliosat edition 3” SARAH-3 at 0.05° spatial
resolution and 30min temporal resolution over the South
West Indian Ocean, using 1-min pyranometer GHI
measurements (in-situ) recorded at different stations of the
Indian Ocean Station network (IOS-net) during the year
2020. Both data have been arithmetically averaged to
different time scales from the annual means to hourly means
for comparison. The data have also been classified into 4
clusters by the use of an unsupervised method of machine
learning, “K-means clustering”, to depict the 4 types of solar
regimes. Validation results show that SARAH-3 reproduces
fairly in the shapes of seasonal cycles and diurnal cycles
with different amplitudes compared to the in-situ
measurements. Stations with higher GHI estimates in
SARAH-3 also depict more clear days and fewer overcast
days than the in-situ measurements.

Keywords: renewable energy; surface solar radiation;
surface observation; satellite-based estimates; South West
Indian Ocean.

1. Introduction

Island regions suffer from structural disadvantages related to
their insularity, which permanently affect their economic
and social development [1]. The recent upward trend in oil
prices also suggests that the global oil market has entered a

depletion phase caused by the conflicting effects of
accelerated growth in global oil consumption due to the rise
of emerging economies and the freeze in supply that has led
to a slowdown in oil production. This global energy price
increase could have profound effects on the weak economic
structure of tropical islands [2]. In addition, the need for a
green environment to reduce carbon emissions and mitigate
climate change is indispensable [3]. Consequently, the use of
renewable energy (RE) is the best way forward for these
tropical islands [4].

Solar energy is claimed to be the cleanest and most abundant
renewable energy source available [5]. However, the
availability of reliable, high-quality in-situ measurement of
Surface Solar Radiation (SSR) is a prerequisite for efficient
planning and operation of solar energy systems [6]. The
Indian Ocean Station network (IOS-net) provides SSR
measurements at different locations on the territories of the
South West Indian Ocean (SWIO; [7]). However, the
network of stations over the SWIO region territories remains
loose, pointing out the scarcity of in-situ measurements.

Satellite-based SSR has grown in importance over the last
few decades. They represent the second-best option after the
ground measurements [8]. The real concern is the validation
of these satellite estimates against the quality-controlled
in-situ measurements to evaluate their characteristics.
Several studies have compared satellite-based estimates to
ground measurements so far over Africa (e.g., Central
Africa: [9], Morocco: [10], Ghana: [11], but to the authors’
knowledge, none has ever made the comparison over the
whole SWIO. Mialhe et al. [12] compared the SSR satellite
estimates of CM SAF SARAH-E with in-situ measurements
performed by Météo-France but over La Réunion island
only.
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This study aims to compare and assess the coherence and
accuracy of the CM SAF SARAH-3 SSR estimates against
the in-situ measurements from the IOS-net radiometric
network and the analysis of their spatial and temporal
variation from diurnal circles to seasonal cycles over the
South West Indian Ocean Islands (La Réunion, Mauritius
(Rodrigues including), Seychelles, Madagascar, and
Comoros). Section 2 is dedicated to the description of the
datasets, 3 methodology, 4 results analysis, 5 discussion, and
6 conclusions.

2. Data

The variable of interest in this study is the global horizontal
component of the incoming surface solar radiation, namely
the Global Horizontal Irradiance (GHI) expressed in W/m2.

2.1 IOS-net in-situ measurements
GHI in-situ measurements are from the Indian Ocean Station
Network (IOS-net, [7]), which covers Comoros, La
Réunion, Madagascar, Seychelles, and Mauritius (including
Rodrigues). Those measurements are taken from Delta-T
Devices SPN1 pyranometers, which provide data in 1-min
resolution. The data collected either as NetCDF or CSV files
is freely available and usable as Open Data on
https://galilee.univ-reunion.fr/ and for different years
depending on when the station was established. For this
study, the data for 2020 was used, collected from 1st January
00:00 up to 31st December 23:00 for all the analysis at
different locations in the SWIO for which data was available
(Fig.1).

Fig.1. Location of the IOS-net stations in SWIO used in
the study with their elevation (see table 1 for full names).

2.2 CMSAF SARAH-3 satellite estimates
The EUMETSAT Satellite Application Facility on Climate
Monitoring (CM SAF, [13]) generates and distributes
high-quality long-term climate data records (CDR) of
energy and water cycle parameters, which are freely
available through the CMSAF Web User Interface
(https://wui.cmsaf.eu/). A new version of the “Surface Solar
Radiation data set – Heliosat – Edition 3” (SARAH-3) was

recently released [14]. As with the previous editions, the
SARAH-3 climate data record is based on satellite
observations from the first and second METEOSAT
generations and provides various surface radiation
parameters, including global radiation, direct radiation,
sunshine duration, photosynthetic active radiation, and
others. SARAH-3 covers the time period 1983 onward and
offers 30-minute instantaneous SSR data as well as daily
and monthly means on a regular 0.05° x 0.05° lon/lat grid.
For this specific study the 30-min instantaneous SSR data
were used as they provide high resolution and facilitate the
analysis on a sub-daily time scale.

3. Methodology

3.1 Data quality control of IOS-net data
The World Meteorological Organization (WMO) Baseline
Surface Radiation Network (BSRN) has established globally
physical possible limits as well as extremely rare limits for
surface radiation measurements, which is included in the
quality control (QC) testing [15]. As a continuation to [15],
Baronnet and Delsaut [16] developed Python tools available
on https://github.com/LE2P/PyBsrnQC that were used in
this study to identify erroneous data and hence discard them.

3.2 Data pre-processing
The analysis was done on different time scales, from the
annual means to diurnal cycles. It should be noted that
SARAH-3 data have been taken after the time of transition
(2006) from MVIRI to SEVIRI instruments, hence the
variable time difference SEVIRI was added to the UTC time
in data to derive the acquisition time of the instantaneous
data. For this very reason, 30 min resolution was upscaled to
the hourly resolution to ensure an accurate comparison for
the analysis on the sub-daily time-scale. The same data for
in-situ (1 min) and for SARAH-3 (30 min instantaneous) has
been used to derive long term averages (annual and
monthly). Because the SWIO spans several time zones, the
UTC time was kept for both IOS-net and SARAH-3 data.
All the analysis was performed in Python (version 3).

3.3 Diurnal cycles’ classification
To perform the analysis on a daily time scale, a diurnal
cycles’ classification was made on both in-situ
measurements and satellite estimates of SSR. K-means
clustering, as in [9], was applied to each station and the
corresponding pixel separately to allocate a set of points into
4 clusters: Clear, AM clear, PM clear, and Overcast [17], in
such a way as to minimize the sum of squares of distances
from a point to the cluster. 200 runs with 4 different centroid
seeds were launched, with 300 as the maximum number of
iterations for the K-means algorithm to allocate each day
(either at the station or pixel) into the 4 clusters and to
define their respective centroids. It should also be noted that
data were first smoothed using the Savitzky-Golay filter to
deal with high-frequency variations in diurnal cycles.
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Fig.2. Mean annual GHI fields (W/m2) of a) the stations at La Réunion b) SARAH-3. Fields were computed for a common
period of 2020.

Fig.3. Seasonal cycles of GHI of selected stations in each territory in the South West Indian Ocean (Fig.1) and their
respective satellite (SARAH-3) estimates.

Differences in 4 types of diurnal cycles between in-situ
measurements and satellite estimates were analyzed along
with their frequency distribution throughout the year.

3.4 Measures of accuracy
There are a number of statistical metrics that have been used
to measure the accuracy of the SARAH-3 solar irradiance
satellite estimates against in-situ measurements. Those
include: the bias (taken as the mean error), the Root Mean
Square Error (RMSE), the Pearson correlation coefficient R,
and the skewness coefficient, which indicates the degree of
skewness of a distribution.

4. Results

4.1 Comparison at the annual time-scale
As a first step of comparison, the annual mean GHI for
IOS-net measurements and SARAH-3 estimates are
presented in Fig.2 while bias values between the two are

provided in Table 1. As expected, La Réunion has a very
pronounced spatial variability due to its complex topography
[12]. The western part receives more GHI than the eastern
part. Le Port, La Possession, Saint-Leu, and Saint-Pierre
stations all display higher values of GHI as they are located
on the coast, which indicates less cloud cover, though
SARAH-3 tends to underestimate the GHI values at these
stations up to ~ 32W/m2 at St-Leu (Table 1). Moufia and
Bois de Nèfles stations are very close but with varying
altitudes (Table 1), which explains their difference in GHI
values. Both stations are negatively biased, though Bois de
Nèfles displays the smallest bias (~ –0.3W/m2) of all the
stations. Saint-André and Plaines des Palmistes stations
have lower annual mean GHI because the east part
experiences the strongest intermittency due to its high cloud
weather and higher precipitation than other places [17].
Generally, the annual mean representation appears realistic
in SARAH-3 except for Cratère Bory, which stands out with
the largest mean annual GHI value (~258W/m2) at the
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station and hence the largest negative bias compared to
SARAH-3. This is due to the fact that Cratère Bory is the
highest of all the stations (2584m; see Fig 1), and the cloud
development (both orographic and those driven by synoptic
systems) is limited by the thermal inversion, the height of
which ranges from 1700 to 3100m over La Réunion, with an
average value of 2000m [12]. Apart from stations of La
Réunion, other stations of SWIO display an annual mean
bias that doesn't exceed 13 W/m2, and this implies a
favorable performance of satellite-based estimates of the
Surface Solar Radiation (SSR).

4.2 Comparison at the monthly time scale
The annual mean gives little information as it does not
convey the evolution of GHI values across the annual cycle,
so as a second step of comparison, the seasonal cycles of
GHI are displayed for the 10 stations selected across the
SWIO region (Fig.3). The stations closer to the equator like
Anse Boileau tend to display a bimodal seasonal cycle with
two GHI maxima in February-March and
October-November, while those in the south part of the
region like Rodrigues display a unimodal cycle with one
peak in December-January. At all stations, minimum GHI
values are observed in June-July. Compared with the in-situ
measurements, SARAH-3 tends to reproduce the shape of
the seasonal cycles fairly. However, we observe a quite
changing behavior for the satellite-based estimates at
different stations.

At the stations of La Réunion, namely Saint-Pierre, Moufia
and Le Port Mairie, SARAH-3 underestimates the GHI
evolution for all stations across the whole year (Fig.3). This
also applies to stations at Mauritius (Vacoas and Rodrigues)
where satellite estimates are lower compared to the in-situ
measurements (Fig.3) with the lowest bias in the austral
winter ranging from July to August (Figure not shown). The
satellite estimates at stations in Madagascar (Diego &
Antananarivo) show a close agreement with the in-situ
measurements. Antananarivo stands out with a lower bias of
~ 2.7W/m2 and the highest correlation coefficient (Table 1),
which suggests a strong, positive association between the
two. Anse Boileau station has a peculiarity in the sense that
the satellite strongly overestimates the GHI values and,
more precisely, during the mid-year when GHI values are
lower. This may be because this station is located near the
ocean, and the nearest pixel from which the satellite
estimates GHI values captures a larger part of the ocean
rather than the land hence resulting in higher values of GHI
estimated at this station. For the Hahaya station in Comoros,
GHI values are overestimated by the satellite in May-July
and underestimated for the rest of the year.

4.3 Comparison and validation on a daily time-scale
After the comparison on a monthly basis, it is wise to look
closely at the daily means as well as the sub-daily cycles. To
that aim, the frequency distribution of daily GHI data for
each station was computed using both in-situ measurements

and satellite estimates. These distributions are presented in
Fig.5 for each station separately and their corresponding
skewness coefficients.

The stations exhibit different distributions of GHI values
due to the spatial variability of GHI data, as it has also been
observed in annual mean values (Fig.2). For stations in
Comoros and Seychelles (resp. Hahaya and Ouani, and Anse
Boileau), more than 70% of daily GHI values range between
100-300W/m2. SARAH-3 tends to underestimate the
frequency of days with GHI levels between 40-200W/m2 but
overestimates the days with GHI levels in the range
200-300W/m2. In addition, the distributions at these 3
stations are moderately skewed to the left, as shown in
Fig.5, with SARAH-3 having a narrower distribution
compared to the in-situ measurements. This is consistent
with results in Fig.4, which depicts lower interquartile range
(i.e., less variability) in SARAH-3 data than in the in-situ
measurements.

Stations on Madagascar (Diego and Antananarivo) all depict
a positive and small annual mean bias as shown in Table 1,
which suggests a close agreement between the two datasets.
SARAH-3 overestimates days with GHI values in the range
of 230-260W/m2 and 300-350W/m2 at Diego and
overestimates days with GHI values in range of
190-230W/m2 as well as those in the range of 280-370W/m2

at Antananarivo (Fig.5). The interquartile range of both
datasets at these stations shows no significant differences
with the median displayed around the same level as per
Fig.4, this suggests that satellite estimates are able to capture
both the mean and the variability as in the measurements.

Fig.4. Boxplots of mean daily values of GHI (W/m2) at
IOS-net stations and their respective SARAH-3
estimates.

For La Réunion stations (Moufia and Saint-Pierre), the
distributions are moderately skewed to the right except for
satellite estimates at Saint-Pierre (Fig.5). This is due to the
fact that at this station, GHI measurements reach higher
levels than in satellite estimates. At Moufia, SARAH-3
overestimates the frequency of days with GHI values
ranging between 70-180W/m2 and underestimates days with
GHI values between 180-350 W/m2 (see Fig.5).
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Fig.5. Frequency distribution of daily GHI values at 10 IOS-net stations and their respective pixels in SARAH-3. The
skewness coefficient of the distribution for each dataset is provided right next to the legend of the figure.

Both stations are characterized by negative bias (Table 1)
and the median distributed at higher level in-situ
measurements than in satellite estimates (Fig.4).

At Mauritius stations (Vacoas and Rodrigues), SARAH-3
has narrower distribution compared to the in-situ
measurements (Fig.5) and the mean is lower in SARAH-3
than in in-situ measurement. Days with GHI values ranging
between 170-350 W/m2 are underestimated by SARAH-3 at
Vacoas, as illustrated in Fig.5.

4.4 SARAH-3’s ability to reproduce diurnal cycles
SSR is subjected to variations during the day, and it is
important to assess the performance of SARAH-3 on a
sub-daily basis and its ability to reproduce the diurnal
cycles. By the use of K-means clustering, the 4 types of
diurnal cycles were obtained; “Clear”, “Overcast”, “AM
clear”, and “PM clear” days as per [9].

The four types of days are represented in Fig.6 for just one
station (Hahaya) as an example, and their frequency of
occurrence throughout the year for all the selected stations
in Fig.7. It should also be noted that the 4 types of days
illustrated in Fig.6 are not the data for any day picked but
rather the centroids of the 4 clusters. SARAH-3 reproduces
the shapes of the diurnal cycles, especially for the clear sky
conditions (Clear and AM clear), For overcast and PM clear
days, the amplitude of the satellite estimates is almost the
same level as the in-situ measurements, but it can
overestimate in other stations (not shown), especially around
noon (local time). For all types of days, it is right to notice
that the GHI values from in-situ measurements are
underestimated during most hours of the day, especially in
the morning (see Fig.6).

SARAH-3 doesn’t accurately picture the frequency of the 4
types of days as in the in-situ measurements. However, in
coherence with the previous analysis on the annual mean
(Fig.2) and seasonal cycles (Fig.3), Saint-Pierre, Moufia, Le

Port, Vacoas and Rodrigues stations at which GHI values are
underestimated, SARAH-3 depicts fewer clear days than
in-situ measurements (Fig.7). On the other hand, stations
like Anse Boileau where we observe a significant
overestimation of GHI measurements (Fig.3), the frequency
of clear days is greater for SARAH-3 than in-situ
measurements while the frequency of overcast days is
underestimated as shown in Fig.7.

Fig.6. Comparison between the four types of diurnal
cycles of GHI (Clear, AM clear, PM clear and Overcast)
extracted thanks to K-means clustering applied
separately to IOS-net stations and their respective
estimates from the nearest pixel in SARAH-3. The
figures shown are for Hahaya station.

5. Discussion

In the quest to assess the performance of SARAH-3 to
estimate the SSR, various analyses have been done on
different scales from annual means to diurnal cycles in
comparison with in-situ measurements. As per the results in
section 4, SARAH-3 revealed quite changing behaviour at

103



Fig.7. Frequency of occurrence (in percentage) of the 4 types of days in both in-situ measurements and SARAH-3 at the
IOS-net station.

different stations. At the annual time-scale (Fig.2), stations
of La Réunion have been analysed and revealed that the
eastern part receives lower levels of GHI values than the
western part, in agreement with the result of [12]. However,
SARAH-E does overestimate SSR values except in
September-November, which is not the case for SARAH-3
over La Réunion. The differences in GHI values observed
between satellite estimates and in-situ measurements might
be a result of the estimation of atmospheric input parameters
of the gnu-MAGIC/SPEMAGIC algorithm used in
SARAH-3, which include: aerosols, water vapor, and ozone
([18]).

The aerosol particles have a significant effect on the
estimation of SSR as they scatter and absorb solar radiation.
SSR, in particular, is sensitive to AOD (Aerosol Optical
Depth) as well as the aerosol type, and SARAH-3 uses
monthly mean aerosol information SSR, which is a coarse
resolution for such an important parameter. In addition, the
accuracy of aerosol information is unknown in several
regions due to missing ground measurements, and the
stations in this study might be affected by the aerosols from
sea-salt aerosols, hence affecting also the accuracy of SSR
estimation. Ozone and water vapor used in the algorithm are
daily means but are on a larger spatial resolution of 0.25°
lat/lon and are regridded to 0.05° lat/lon to match the
resolution of SARAH-3. Also, the uncertainty in effective
cloud albedo leads to the same exact uncertainty in the cloud
index, all mounting to the overall uncertainty in SSR
estimation ([18]).

Moreover, SARAH-3 is derived from satellite images
centred on Africa, and some of the SWIO territories are at
the border of these images causing the pixels to be deformed
and the spatial resolution greater than 0.05°. The differences
we observe in the results of the study in section 4 can not
only be attributed to uncertainties of the SARAH-3 but also
to the quality of in-situ measurements. While data quality
control removes erroneous data from in-situ measurements,
some other errors may result from the calibration or poor
maintenance of the instruments (SPN1) and cannot be

detected by quality control. The temporal resolution of
aerosol load and composition is the main source of
uncertainty in the Meteosat satellite retrievals, and
improving this resolution from monthly to daily mean might
lead to a significant decrease of bias that is observed.

Table 1. Correlation coefficient (R), mean Bias, and the
Root Mean Square Error (RMSE) of the stations (Fig.1
for names) and their corresponding pixel in SARAH-3
derived from daily data.

6. Conclusion

This study aimed at comparing and assessing the coherence
and accuracy of the CM SAF SARAH-3 SSR estimates
against the in-situ measurements from the IOS-net
radiometric network and the analysis of their spatial and
temporal variability over the South West Indian Ocean
Islands (La Réunion, Mauritius, Seychelles, Madagascar,
and Comoros).

To achieve this aim, the satellite estimates of SSR have been
compared to the in-situ measurements at different time
scales spanning from annual to diurnal circles. While
SARAH-3 fairly reproduces the shape of the seasonal
circles, the amplitude differs from those of in-situ
measurements at each station. At diurnal cycles, not only the
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shapes of the cycles have been analyzed but also the
classification of the 4 types of days (Clear, AM clear, PM
clear, and Overcast) have been conducted thanks to K-means
clustering. This also has allowed the comparison of their
frequency of occurrence at each station. The assessment on a
daily time-scale showed a high correlation above 0.8 at all
stations, suggesting a good resemblance of the satellite
estimates and in-situ measurements at this time scale.
However, SARAH-3 underestimates the SSR annual mean
at some stations and overestimates at some others because
the spatial resolution of 5 km implies that non-negligible
variations are to happen inside each pixel of 25 km2. The
main source of uncertainties for SARAH-3 is believed to be
the accuracy of the detection of aerosols and cloud index in
order to estimate SSR values. The refinement of the
temporal resolution of aerosol from monthly to daily mean
and spatial resolution of SARAH-3 from 5 km to 1 km
would improve the estimation of SSR values. Additionally,
the use of adaptation techniques can be used to improve
satellite-derived SSR estimates so as to reduce the biases
with the local in-situ measurements.

Finally, this study has just focussed on one year (2020),
which might not give enough information on the
performance of SARAH-3. Moreover, there are few stations
available in territories of SWIO, which doesn’t allow a
deeper analysis of the performance of SARAH-3 on special
variability in the specific territories. This poses a limitation
to this study and creates a room for future improvements.
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Abstract: To ensure energy autonomy, initiatives aiming at 
mitigating emissions of greenhouse gases in the energy sector 
rely on the development of renewable energy sources (RES). 
However, integrating electric RES into the energy mix 
represents an important challenge due to the variations they 
undergo, which induce variations in electricity production 
that are not always in phase with demand. The key goal of the 
present study is to provide a wind resource assessment over 
Reunion, a small island located in the South West Indian 
Ocean (SWIO) aiming to become self-sufficient for its 
electricity with RES by 2030. Currently, wind energy comes 
from two farms. An increased reliance on wind energy could 
help reach the 100% RES target, including new offshore and 
onshore wind turbine capacity installations. In this study, the 
wind data from a variety of gridded datasets, including 
climate reanalysis ERA5 at ~25 km spatial resolution and 
ERA5-Land at ~9 km spatial resolution, along with the 
Météo-France AROME model at ~2.5 km spatial resolution 
are compared and validated against in-situ measurements 
from different Météo-France sites across Reunion over the 
period 2017–2020. All datasets are recorded at 10 m height 
with an hourly temporal resolution. The validation was 
performed over different time scales, from annual means to 
diurnal cycles, and statistical metrics such as correlation, bias, 
and root-mean-square error were computed to measure errors. 
Logarithmic law was used to extrapolate wind speed at hub 
heights in order to obtain the wind power density at those 
heights. The results reveal that the AROME is highly accurate 
and reliable, especially in complex terrain where lower biases 
are obtained in comparison to the ones with the reanalysis 
datasets. The wind power potential is high at 50 m and 100 
m, especially in the northeast parts of the island, which appear 
to be suitable for onshore wind farm installation.   

Keywords: Renewable energy; Logarithmic law; Wind power 
density; Reunion Island; model estimates; surface 
observation. 

1. Introduction
According to the Intergovernmental Panel on Climate Change 
(IPCC), temperature will rise by roughly 1.5°C by the end of 
the 21!"century under the best-case scenario. Continued 
greenhouse gas (GHG) emissions will cause additional 
warming and long-term changes in all components of the 
climate system; therefore, limiting climate change requires a 

reduction in those emissions [1]. In the context of the energy 
sector, climate change mitigation policies rely on the 
development of Renewable Energy (RE) to ensure energy 
autonomy. Transitioning to a sustainable energy supply using 
RE sources (RES) is even more important for island 
territories as they do not have any connection to continental 
grids. This is especially the case of Reunion island, a French 
overseas department located at 20°8S and 55°5E in the South 
West Indian Ocean (SWIO), which has turned to RE sources 
as a sustainable replacement for some of its energy supply [2]. 
The island aims to achieve energy autonomy by 2030 based 
on greater energy efficiency and RE alternatives such as solar, 
wind, geothermal, ocean, biomass, and hydropower energy 
[3]. In 2017, RE provided almost 32% of electricity 
production, with about 14% coming from hydropower, 9% 
from biomass, and 9% from solar, wind, and biogas [4]. Thus 
far, the electricity produced from wind over Reunion comes 
from two farms located at the east of the island. Significant 
growth in wind power in Reunion is expected to meet the 
2030 target, with the installation of both offshore and onshore 
wind turbines. This will require the assessment and 
characterization of the available wind resources, considering 
the island’s context. 

The wind potential is usually investigated using the wind at 
the hub height of the wind turbine (e.g., 50 or 100 m). In the 
absence of such measurements, a power or logarithmic law 
can be used to first extrapolate wind speed at 10 m to different 
hub heights [5, 6, 7, 8] and then convert the wind speed at 
these heights into wind power density. Given the small size 
of the island and the scarcity of the in-situ measurements 
(only ~15 Météo-France stations measuring the wind at 10 
m), the characterization of the variability of the wind resource 
at high spatial and temporal resolution requires the use of 
gridded simulated datasets, provided that they are capable of 
representing the wind fields at 10 m. 
In a recent study conducted in France, Jourdier compared 
wind speeds from various simulated datasets (AROME, 
ERA5, MERRA-2, COSMO-REA6, and NEWA) with 
observed wind speeds. The wind speed was then converted 
into wind power. The findings revealed that AROME and 
COSMO-REA6 exhibited superior performance in complex 
areas, characterized by lower bias and higher correlation, 
compared to the other models. This was attributed to their 
higher spatial resolution [5]. 
The objectives of this study are to compare and validate 
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gridded datasets (ERA5 and ERA5-Land climate reanalysis, 
AROME numerical weather prediction model) against in situ 
measurements, to (1) determine the average wind field, (2) 
examine the spatial and temporal variations from the diurnal 
to the seasonal time scales, and (3) compute the wind power 
density at different hub heights. The paper is structured as 
follows: section 2 covers the data and methodology, and 
section 3 provides the results. Finally, section 4 presents the 
discussion and conclusion. 

2. Case study, Data and Methodology
2.1 Description of Reunion case study 

Reunion is a small island (2512 km2) with complex 
topography: it has two significant peaks, the Piton des Neiges 
(3071 m) and the Piton de la Fournaise (2632 m), linked by a 
plateau at an altitude of about 1500 m (Fig.1). The island’s 
mountain slopes experience sudden changes in elevation, 
which can significantly impact wind patterns [9]. The 
presence of updraft caused by atmospheric stability and the 
interaction with the surrounding topography can lead to 
increased gusting due to turbulence intensity and integral 
length scale turbulence. The island is characterized by a 
humid tropical climate that is tempered by the oceanic impact 
caused by trade winds blowing from east to west with a speed 
of up to 4 m/s throughout more than 60% of the year [10]. 
Wind acceleration is observed in the southeast and northeast 
due to the trade-wind direction and high relief of the island. 
Trade winds are usually weaker in the rainy season 
(November to April) than in the dry season (May to October). 
In the rainy season, Reunion is exposed to strong cyclones 
[11]. that reach wind speeds of more than 200 km/h. 

Fig.1. Topography of Reunion Island along with the 
stations from Météo-France measuring wind speed and 

direction at 10 m. 

2.2 Data 

2.2.1 In-situ measurements 

In this study, we used quality-controlled hourly wind speed 
and direction measurements from 16 Météo-France stations 
(Fig.1) recorded between 2017 and 2020 at a height of 10 m 
above ground level. The stations can be classified into three 
categories based on their location: east, highs, and west. 

2.2.2 Gridded datasets 

Gridded datasets used in this study include two global climate 
reanalysis produced by the European Center for Medium-
range Weather Forecast (ECMWF), namely ERA5 at a spatial 
resolution of ~25 km [12] and ERA5-Land at a spatial 
resolution of ~9 km [13], which are available for free and 
accessible on https://cds.climate.copernicus.eu/cdsapp#. 
These two datasets are produced by combining observations 
with simulated data in order to obtain the most realistic 
possible description of meteorological phenomena by using 
the laws of physics. ERA5 provides the wind data for land 
and ocean at a height of 10 m and 100 m, while ERA5-Land 
provides the wind data only for land at a height of 10 m. Both 
have the same temporal resolution (hourly). In addition, the 
outputs of the Météo-France numerical weather prediction 
model, AROME, at a spatial resolution of 2.5 km are used 
[14]. This dataset is available with permission from Météo 
France. All datasets provide zonal and meridional wind data 
at a height of 10 m, with the exception of ERA5, which also 
provides wind data at 100 m.  

2.3 Methodology 

2.3.1 Extrapolation of wind speed at different hub heights 

Wind speed and direction from the gridded datasets were 
computed from the zonal and meridional components of the 
wind field at different hub heights. The logarithmic law is 
used to derive the wind data at different hub heights, 50 and 
100 m, following [15]: 

𝑣#=𝑣$
%&((!/(")
%&((#/(")

         (1) 

where 𝑧$=10 m, 𝑧#=50 m or 100 m, 𝑣$ is the wind speed at 
𝑧$, 	𝑣# is the wind speed at 𝑧#, and 𝑧+ is the surface roughness 
length which varies according to terrain types. 

The surface roughness is estimated from equation (1) as: 

𝑧+= 𝑒𝑥𝑝 *,!(%&((#)-,#(%&((!)
,!-,#

+ 

using ERA5 wind data at 10 m (𝑣$)  and 100 m (𝑣#).  Equation 
(1) is then applied to the wind data at 10 m from the other
datasets [16]. 

2.3.2 Comparison and validation of simulated and observed 
wind speed 

The following basic performance metrics are used to 
determine the accuracy of the three gridded datasets. These 
include:  

- The Mean Bias Error (MBE, or Bias) captures the
average deviation between modelled and observed data. 

𝑀𝐵𝐸 = $
.
∑ (𝑆/ − 𝑂/).
/0$      (2) 

where 𝑁 is the total number of observations, and 𝑆/ is the 
simulated value and 𝑂/ the observational value at point 𝑖. 

- The Root Mean Square Error (RMSE) is used to measure
the difference between modelled and observed data. 

𝑅𝑀𝑆𝐸 = 9$
.
∑ (𝑆/ − 𝑂/)#.
/0$       (3)
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- The Pearson Correlation (R) is used to measure the linear
relationship between two variables.

𝑅 =	 ∑ (2$-2̅)		(5$-56)
%
$&#

7	∑ (2$-2̅)!%
$&# ∑ (5$-56)!%

$&# 				
						 (4) 

where 𝑆	: the average simulated value and 𝑂; is the average 
observational value. 

2.4 Wind power density (WPD) 

The wind power generated by wind turbines, or Wind Power 
Density (WPD), is related to the cube of wind speed V in m/s 
and the air density 𝜌 in kg/𝑚8. WPD (W/𝑚#) is expressed as: 

𝑊𝑃𝐷 = $
#
𝜌𝑉8 (5) 

𝜌 ≅
898.;<$- '

()!*#=
).!,!(

#>8.$9?@

where 𝑍 is the altitude in m and 𝑇 is the surface temperature 
in °𝐶.	 These variables are available in the Météo France 
dataset. The air density was computed at the point and height 
of interest from [8]. 

3. Results and Discussion
3.1 Comparison of simulated and observed annual wind 
speed 

Fig.2. depicts the 10-m wind speed for land and ocean over 
the Reunion domain on annual means from 2017 to 2020 for 
the three gridded datasets (ERA5, ERA5-Land, and AROME) 
and the observations (all stations provided). Focusing on the 
latter, we can see that the annual mean wind speed varies from 
1.2 to 6.0 m/s. High annual average wind speeds are found at 
Gillot Aéroport, Pierrefonds Aéroport, and Gros Piton Sainte 
Rose, as well as at the stations located on the coastline of the 
island, whereas the lowest annual average wind speed (~1.2 
m/s) is found at Cilaos (Fig.2a). ERA5 and AROME display 
higher annual mean wind speeds on the ocean compared to 
the land (Fig.2b, 2d). The data for ERA5 and AROME on the 
ocean could be used for assessing the wind resource to 
identify the best locations for the installation of offshore wind 
farms. Over land, the annual mean wind speed varies from 
~2.3 to 3.0 m/s in ERA5, from ~1.5 to 4.3 m/s in ERA5-Land, 
and from 1.0 to 6.0 m/s in AROME (Fig.2b, 2c, 2d). In all 
datasets, it appears that the northeast part of the island 
displays a higher annual mean wind speed compared to the 
other parts, in agreement with the mean direction of the trade 
winds over the region. Fig.3 depicts the seasonal and diurnal 
cycles of wind speed at 10 m for all datasets. The wind speed 
is clearly higher and more variable throughout the year in the 
observational data compared to the gridded datasets. Higher 
wind speeds are found in June and July (Fig.3a). The monthly 
mean wind speed peaks in July in the observations and 
AROME and in June in ERA5 and ERA5-Land. This is 
consistent with the strengthening of the trade winds in 
wintertime. At diurnal timescales (Fig.3b), wind speed peaks 
during the day and declines slowly at night. Compared to the 
other gridded datasets, the average wind speed from AROME 
is closer to that from the observations, which indicates that it 
gives better performance on this island when compared to the 
observations than the climate reanalyses. 

Fig.2. Spatial distribution of the annual mean wind 
speed at 10 m over the Reunion domain from stations 

(Météo-France) and gridded (ERA5, ERA5-Land, 
AROME) datasets for the period 2017-2020. For each 
dataset, the spatial average is indicated at the top right 

corner of the graph. 

(a) 

(b) 

Fig.3. Box plots of the (a) monthly- and (b) hourly-mean 
10-m wind speed for 16 Météo-France stations over
Reunion (red) along with the nearest pixels in ERA5 
(blue), ERA5-Land (green) and AROME (brown). 
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3.2 Wind rose and wind speed validation for eight 
stations over Reunion Island 

In this section, we use wind rose diagrams to describe both 
the speed and the direction of winds at locations of interest. 
Hopuare used wind roses to determine which winds were 
dominant in French Polynesia at different sites [17]. Eight 
stations over Reunion Island were organized into two groups 
depending on their location: Bellevue Bras-Panon, Saint-
Benoît, and Gros Piton Sainte-Rose on the eastern coast of 
the island, and Piton-Maïdo, Plaine des Cafres, Petite-France, 
Bellecombe-Jacob, and Plaine des Palmistes on the highs 
(Fig.1). Fig.4 shows the wind roses for the chosen locations. 

a) Piton-Maïdo b) Plaine des Palmistes

c) Plaines des Cafres d) Petit-France

e) Bellecombe-Jacob f) Bellevue Bras-Panon

g) Saint-Benoît                           h) Gros Piton Sainte-Rose 

Fig.4. Wind direction and speed frequency at 10 m for 
eight Météo-France stations for the period 2017-2020. 
The circles indicate the frequency and a colour band 

indicates the range of wind speeds in m/s. 

The wind roses in Fig.4 illustrate the frequency and speed of 
wind blowing from each direction at each location. According 
to Fig.4a, we find that at Piton-Maïdo, easterly winds are 
predominant, and only about 1% of all winds exceed 8 m/s. 
The lowest wind speeds, less than 4 m/s, are seen at the Plaine 
des Palmistes (Fig.4b). At the Plaine des Cafres (Fig.4c), 
northeasterly winds showing a speed below 6 m/s are 
observed. Lower wind speeds, often less than 6 m/s, are found 
at Petite France, where the wind comes predominantly from 
the southeast (Fig.4d). Southerly and northerly winds are 
frequently observed at Bellecombe-Jacob (Fig.4e), where 
they often reach 8 m/s. The two stations in the highs of the 
mountain peaks (Bellecombe_jacob, Plaine des Palmistes) 
are the only ones that have two opposite predominant wind 
directions. Fig.4f, shows that Bellevue Bras-Panon winds are 
predominantly blowing from the southeast, with wind speed 
values up to 8 m/s. Fig.4g shows that at Saint-Benoît, the 
predominant wind blows from east to south-east, it often 
reaches 8 m/s. Gros Piton Sainte-Rose (Fig.4h) shows higher 
wind speed values than the other locations, reaching 14 m/s, 
and a predominant wind direction from the south. There is a 
wind farm in Reunion located at this site. The northwest 
winds are infrequent in (Fig.4b, 4c, 4g, 4f). The most 
predominant winds at those sites are easterly, southeasterly, 
and southerly. Furthermore, in comparison to stations located 
over the highs, stations on the east exhibit the highest wind 
speed, particularly in Gros Piton Sainte-Rose. 
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Fig.5. Correlation coefficient between the 10-m wind 
speed at the nearest pixel of the gridded dataset and that 

at the station as a function of bias (in m/s) at eight 
Météo-France stations. Results are given in blue for 
ERA5, in green for ERA5-Land and in brown for 

AROME. 

Table 1. Calculated Root Mean Square Error (m/s) 
values at 8 stations. 

Stations Datasets 

ERA5 ERA5-Land AROME 

Bellevue 
Bras-Panon 

1.19 0.24 0.91 

Piton-Maïdo 1.27 -2.23 -0.91

Plaine des 
Cafres 

0.54 0.99 0.58 

Petite-France 0.17 0.45 0.13 

Bellecombe-
Jacob 

1.18 1.08 0.63 

Plaine des 
Palmistes 

1.12 0.50 0.08 

Saint-Benoît 1.62 1.22 0.85 

Gros Piton 
Sainte-Rose 

1.17 1.22  1.22 

Fig.6. Diurnal evolution of the 10-m wind speed (in m/s) 
at 8 Météo-France stations over Reunion for the period 

2017-2020 (in red) along with that from the nearest pixel 
of the gridded datasets (AROME in brown, ERA5-Land 

in green, ERA5 in blue). 

In Fig.5, which depicts the bias vs the correlation coefficient 
for the gridded datasets in comparison to the observations 
(only 8 sites at the east and over highs are  used  here due to 
the availability of ERA5-Land), the AROME model has a 
high correlation (>0.7) for all stations with the exception of 
Bellecombe-Jacob, which displays a correlation of 0.6 and a 
small bias of -0.59 m/s. In addition, stations with the highest 
correlation (above 0.8) are Gros Piton Sainte-Rose, Bellevue 
Bras-Panon, Plaine des Cafres, and Petite-France. Petite-
France, for all datasets, shows a low bias, an absolute value 
lower than 0.5 m/s, and a high correlation. AROME depicts 
that Plaines des Palmistes and Petite-France have a low bias 
close to 0 m/s. Table 1 shows the calculated RMSE values. 
The lowest RMSE found at Plaine des Palmistes (AROME) 
is around 0.08 m/s. In ERA5-Land, the highest correlation is 
found for Bellevue Bras-Panon and is associated with a low 
bias (absolute value below 0.3 m/s) and low RMSE around 
0.23 m/s. In ERA5, higher correlation is obtained in Petite-
France (0.76) and Bellevue Bras-Panon (0.73), where the 
absolute values of bias are 1.17 m/s and 0.12 m/s, 
respectively. Plaine des Cafres in ERA5 shows the lowest 
correlation, around 0.33, with a low bias. At the diurnal scale 
(Fig.6f), AROME at this location closely follows the 
observation, with a sharp increase of the wind speed from 9 
a.m. up to 3 p.m. and a slow decrease during the night, in
contrast to the two other gridded datasets in which the mean 
hourly wind speed is overestimated. In ERA5 and ERA5-
Land, the diurnal cycle shows a tendency to increase during 
the day for all sites, unlike observations and AROME, where 
the diurnal cycle is sometimes less marked in Piton-Maïdo 
(Fig.6b), Plaine des Cafres (Fig.6c), Petite-France (Fig.6d), 
and Gros Piton Sainte-Rose (Fig.6h). At Bellevue Bras-Panon 
(Fig.6a), we observe a decrease in the intensity of the wind 
during the day, unlike ERA5 and ERA5-land. Compared to 
the other gridded datasets, the AROME model well represents 
the diurnal cycle of average wind speed in the mountainous 
area. 

3.3 Wind power density for eight stations at 10, 50 and 
100 m in Reunion Island 

(a) 
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(b)

(c) 

Fig.7. Monthly wind power density in W/m2 at the height 
of (a) 10 m, (b) 50 m and (c) 100 m for eight Météo-

France stations over Reunion for the period 2017-2020. 

Fig.7 shows the monthly Wind Power Density (WPD) at 10 
m, 50 m and 100 m for the eight Météo-France stations over 
Reunion Island. At 10 m (Fig.7a), the WPD never exceeds 
100 𝑊/𝑚# for all stations. We observe that Gros Piton 
Sainte-Rose at the east displays higher WPD values 
compared to the other stations in all months except August 
and September, with a peak at approximately 75 𝑊/𝑚# in 
July. In contrast, Petite-France over the western highs has the 
lowest WPD values (below 10 𝑊/𝑚#) for all months. By 
considering the logarithmic atmospheric boundary layer 
profile, the wind speed tends to increase due to reduced 
surface roughness, which leads to an increase in WPD at 
higher elevations. At 50 m (Fig.7b), high WPD is found at 
three stations at the east, Gros Piton Sainte-Rose, Bellevue 
Bras-Panon and Bellecombe-Jacob, with the highest value at 
350 𝑊/𝑚# once again at Gros Piton Sainte-Rose in July. In 
addition, Piton-Maïdo over the western highs displays a 
maximum WPD at ~260 𝑊/𝑚# in March. The lowest WPD 
is found at Saint-Benoît and Plaine des Palmistes with values 
less than 50 𝑊/𝑚# in all months. At 100 m (Fig.7c), a 
maximum value of ~600 𝑊/𝑚# is found in June at Bellevue 
Bras-Panon. At this location, WPD remains above 230 
𝑊/𝑚# for all months. As for the 50-m hub height, the 
minimum values at 100 m are observed at Saint-Benoît and 

Plaine des Palmistes. According to the results, maximum 
values in June and July indicate higher WPD in austral winter. 
Furthermore, Gros Piton Sainte-Rose has the highest wind 
resource potential, followed by Bellevue Bras-Panon, 
Bellecombe-Jacob and Piton-Maïdo. This indicates that these 
locations have a higher wind speed and are more suitable for 
wind power projects.  

4. Discussion and Conclusion

For assessing the wind resource in Reunion Island, we used 
different methods described in section 2.3. The comparison 
between model outputs at different spatial resolutions and 
observations showed that the northeast part of the island has 
a higher annual wind speed compared to the other parts due 
to the fact that the  wind trades over the island blows largely 
from the northeast part. The AROME model compared to 
gridded datasets indicates a high annual wind speed of around 
2.71 m/s at 10 m for only land. Furthermore, the AROME 
model also indicates that there is a higher annual wind speed 
along the coastline and in some parts of the middle of the 
island. This is due to the fact that the model has a higher 
resolution compared to the other gridded datasets, showing 
more pixels that provide more detailed information with a 
resolution (~2.5 km). Additionally, this model exhibits a 
strong correlation above 0.7 for all stations, particularly for 
Gros Piton Sainte-Rose, Bellevue Bras-Panon, and Plaine des 
Cafres, which have correlations above 0.8. The spatial and 
temporal variability was quantified at the seasonal and 
diurnal timescales. The mean wind speed is higher in June 
and July in the wintertime. At the diurnal scale, the peak of 
average wind speed is found during the day and slowly 
decreases during the night, due to the differential heating of 
the Earth’s surface during the daily radiation cycle [16]. At 
the eight stations used, the wind rose maps (Fig.4) showed the 
predominant winds over the island to be easterly, 
northeasterly, and southerly, depending on the stations. For 
instance, Piton-Maïdo experiences easterly winds of 8 m/s, 
suggesting wind farms should be oriented eastward direction 
to maximize their efficiency. It is important to take account 
both frequency of high winds and direction in which their 
blow. The wind potential density (Fig.7) was estimated at 
different heights. At 10 m, the WPD never exceeds 100 
𝑊/𝑚# for all stations used. It increases at 50 m and 100 m, 
with the highest WPD values notably found at stations located 
in the northeast part of the island, such as Gros Piton Sainte-
Rose and Bellevue Bras-Panon. The wind power density at 
50 m and 100 m shows the high potential, where the 
maximum reached 350 𝑊/𝑚# and 600 𝑊/𝑚#, respectively. 
Additionally, Bellevue Bras-Panon and Piton-Maïdo display 
WPD above 220 𝑊/𝑚# throughout the year. Furthermore, 
Gros Piton Sainte-Rose displays lower intra-daily variation 
compared to the other stations with wind speeds above 3.7 
m/s throughout the day. In addition, Bellevue Bras-Panon 
also has a mean wind speed above 3 m/s for all hours and a 
higher mean speed than the other stations from 12 p.m. to 15 
p.m. Then, the highest wind resources over Reunion could be
found at those stations. These sites could be considerable for 
the installation of new wind farms. Gros Piton Sainte-Rose, 
for instance, should be directed south in order to take 
advantage of the strong and frequent south winds, while 
Bellevue Bras-Panon should be oriented southeast. 
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The aim of this study was to compare and validate modelled 
(ERA5, ERA5-Land, AROME) and observed wind data. To 
achieve this aim, we used statistical metrics to validate the 
models, which include R, RMSE, and MBE. Wind energy 
potential was investigated in Reunion Island using hourly 
data from 2017–2020 for eight stations at 10 m above ground 
level. The wind speed at 50 m and 100 m was extrapolated 
using logarithmic law. Our results show that all datasets have 
high mean wind speeds in the north-east and east parts of the 
island and along the coast. Among those modelled datasets, 
the AROME model demonstrated that it has a higher annual 
wind speed than the gridded datasets used in this study. In 
addition, it shows the lowest bias with a high correlation in 
comparison with the observations than the other datasets over 
complex terrain. It also exhibits low biases relative to other 
models, with biases that are particularly low for the Plaines 
des Palmistes and Petite-France. According to the annual 
mean wind speed, the northeast, east, and coastal parts of the 
island have high wind potential, especially in lower latitudes. 
Gros Piton Sainte-Rose, Bellevue Bras-Panon, Piton-Maïdo, 
and Bellecombe-Jacob were found to have a higher WPD 
compared to other sites considered. Furthermore, the 
AROME model demonstrated that it has better skill on this 
island compared to other gridded datasets, as it provides more 
information on mean wind speed from a regional to a local 
scale due to its higher resolution. 
In this study, we used 4 years and 8 stations to determine the 
wind potential of the island. We would therefore suggest 
using more than 4 years of data with high resolution, at most 
5 km, as required to determine the wind resource assessment 
on a complex topography such as that of Reunion. 
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Abstract: In South Africa, the energy transition from 

fossil fuels to renewable energy is advancing. The 

advancement is essential to meet affordable, reliable, 

and sustainable energy. Replacing fossil fuels with 

renewable energy has been unfolding at an average 

rate due to gradual improvements in renewable 

energy technologies and insufficient awareness of 

those technologies. Improvements in renewable 

energy technologies will protect the environment, 

improve the socio-economic lives of people, and 

promote clean economic growth in rural areas. This 

paper presents an overview of available and potential 

renewable energy resources in Limpopo province to 

evaluate their technologies concerning the 

availability of energy sources and their technological 

criteria. Renewable energy resources assessed were 

solar PV, biomass, hydropower, geothermal, and 

wind energy. Two renewable energy resources (solar 

PV and biomass) are the top utilized energy 

resources in the province and the remaining 

resources are potential resources. Favorable 

geographic location and affordability are the drivers 

behind solar PV demand. Biomass waste availability 

and waste treatment plant availability drive the 

utilization of biomass technology. Satisfying 

renewable energy performance consequence an 

economical reliable energy supply, lower harmful 

gas emissions, and reduced energy poverty. 

Keywords: Renewable energy technologies; solar 

PV; Biomass; Biogas; Micro-grids. 

1. Introduction

In Sub-Saharan Africa, approximately 13% of the 

population dwells in areas with limited access to 

electricity [1]. This challenge is arising in areas with 

enormous potential for renewable energy 

development and implementation. Limpopo province 

in South Africa falls under that area scenario where 

some areas do not have access to electricity and some 

with limited electricity reliability [2]. People who 

have access to national utility electricity face annual 

electricity price hikes, and this puts their socio-

economic life under difficulties. An alternative way 

to supply reliable cheap-priced electricity is needed 

and that can be achieved through the combination of 

various renewable energy resources technologies in 

the province. Favorably Limpopo province has 

available renewable energy resources. In this paper, 

the overview of different renewable energy 

technologies both available and potential which 

include: solar PV, biomass, hydropower, geothermal, 

and wind turbine [2] is presented, to achieve qualities 

of renewable energy resources such as sustainability 

and durability and technological criteria such as 

continuity, availability and predictability of energy 

sources assessment. This will answer the question of 

what technologies are being utilized in the province 

and whether those technologies are successful in 

supplying sufficient energy to end-users. To the 

author’s knowledge, this subject of study has been 

conducted in various parts of the world but there 

exists limited literature on the subject in Limpopo 

province. To this effect, different technologies are 

assessed to determine why certain technologies are 

implemented and others are not. In areas where they 

utilize some of those renewable energy systems, 

there is a socio-economic development [3]. 

2. Literature review

This literature review will examine both available 

and potential renewable energy resources. Solar PV, 

wind turbine, hydropower, biomass, and geothermal 

are the renewable energy technologies assessed. 
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2.1. Solar PV technology 

The study conducted by [4] utilized a model created 

on MATLAB R2020a to simulate the performance of 

a solar system. The study showed that the climate of 

Limpopo maintains satisfactory performance and 

reliable utilization of solar PV. [5] Identified types of 

renewable energy resources used in the province 

through surveys and questionnaires. It was supported 

that Limpopo has favorable weather conditions 

suitable for any solar PV technology. [6] assessed 

small-scale renewable energy resources, utilizing 

empirical models and the NASA database for solar 

estimation. The study acknowledged that the effects 

of solar radiation and territorial climatological 

measurements in the Vhembe district are satisfactory 

for solar PV energy generation. The assessment study 

conducted by [7] used the solar radiation H-S model 

to investigate the effects of seasonal change on solar 

PV power performance in the Vuwani area. Seasonal 

changes do impact the performance of solar PV as 

temperature intensity changes. [8] conducted a study 

that discussed various methods and technologies to 

solve Sub-Saharan Africa's electrification challenges. 

The geographical climate and load profiles of the 

study area support that on top of the list, solar PV 

technology is an employable technology in the 

region. An assessment by [9] analyzed the 

performance of solar PV for a groundwater pumping 

system utilizing a community engagement process 

and solar-powered irrigation system toolbox. The 

solar system generates power, which benefits the 

locals of Giyani with domestic and farming water 

security. An assessment conducted by [10] and [11] 

continued to promote that efficient solar system 

technologies are essential as they can satisfy the load, 

especially for large-scale projects. A report given by 

the Limpopo provincial government acknowledged 

that the province is home to the biggest solar power 

plants in the country [12]. [13] presented the 

successful operation of the Soutpan solar plant which 

feeds the national grid. A review paper by [14] 

supported that not only the Soutpan solar plant was a 

success but also the Witkop solar park, which 

generates 33MW of power that is fed to the national 

grid, has been successful and satisfactory. The 

satisfaction of large solar PV plants has been further 

supported by [15], who assessed the successful 

operation of the 66MW Tom Burke solar plant. 

2.2. Biomass and biogas technology 

An investigation study conducted by [16] indicated 

that Limpopo province sits in 2nd position in terms of 

utilizing biomass energy in the country. Biomass is 

converted to biogas using anaerobic digestion and its 

availability and consumption have been studied by 

[17] to exhibit the advantages and benefits of using

biogas energy. A review paper authored by [18]

provided perspective on Africa's energy transition

and the commitment of various locations towards

transitioning into the green economy through biogas

technology. An evaluation conducted by [19] used a

field survey and logit regression model to evaluate

basic factors the biogas technology awareness and

perceptions towards its adoption and utilization at the

household level in Limpopo and the study showed

that the adoption of biogas technology has a positive

impact in the province. [20] Continued to study

effects of human perspective towards biogas energy

implementation. A study conducted by [21] observed

the operation of fixed dome biogas digesters,

intending to exhibit development success brought by

biogas energy in rural areas. Biogas energy was

found to be a system that saves the environment by

reducing greenhouse gases and serving as a waste

management solution [22]. A study by [23]

addressed the implementation of suitable biogas

technology in rural areas of the Vhembe district,

where fixed dome digesters are utilized. [24]

supported that biogas technology can enhance

communities’ economic development. [25] said that

it is important to implement small bio-digesters for

household’ usage. An assessment conducted by [26]

showed that barriers to popularizing and

implementing biogas digester technologies dwell on

technical, economic, and sociocultural constraints.

[27] continued to narrate to provide solutions on

barriers behind the low adoption of biogas

technology in some areas. An evaluation conducted

by [28] demonstrated the advantages of utilizing

biogas technology, including health, environmental,

and economic benefits. The agricultural benefits of

using green manure legumes in maize production

have been studied by [29] to lengthen the advantages

of biomass utilization.
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2.3. Hydropower 

The hydropower development report prepared by 

[30] showed that there is a 1500MW pumped storage

hydropower built by ESKOM in Tubatse

municipality, Limpopo. [31] went on to show that

small, decentralized hydropower stations can play a

role in supplying electricity to rural areas. The

evaluation study presented by [32] described the

development of South African hydropower

opportunities and the study showed that stakeholders

in hydropower need to be made aware of its positive

outcomes. A study conducted by [33] addressed

barriers of lack of information by providing an

overview status of small hydropower in South

Africa.  The study showed that a small hydropower

capacity can be installed for Limpopo, Mpumalanga,

KZN, and Free State provinces. [34] examined

problems and challenges in hydropower development

in South Africa. Studies showed that lack of finance

is the main hindrance to hydropower development.

This means that the province has hydropower

potential.

2.4. Geothermal 

Geothermal energy is a renewable resource that has 

potential in Limpopo province. A brief study 

conducted by [35] explored various renewable 

sources of energy and their applications. Geothermal 

was found to be one of the potential renewable 

energies in Limpopo province but its exploration is 

moderate. [36] presented an exploration study 

utilizing magnetic and seismic methods to describe 

requirements for geothermal exploration In South 

Africa. The study explored ancient plate boundaries 

known as mobile belts and greenstone belts. 

Unfortunately, little exploration has been done on 

geothermal energy, though the study area has its 

potential. Evaluation conducted by [37] supported 

that low enthalpy geothermal energy can be 

alternative energy in Namaqua-natal mobile belt and 

Limpopo belt. Binary-circle geothermal plants were 

proposed. Low enthalpy geothermal energy was 

further investigated in Limpopo province by [38] to 

harness it. The study utilized hydraulic fracturing and 

magneto-telluric methods to show that a 75MW 

geothermal system can be implemented. [39] 

employed mathematical modeling and numerical 

simulations on MATLAB to show that geothermal 

can generate 66.6% efficiency of power and there is 

room for development. 

2.5. Wind turbine energy 

Implementing wind plants requires careful planning 

to position wind turbines. Wind speed and wind 

direction is also an important aspect to observe [40]. 

A study conducted by [41] indicated that areas with 

good wind potential have an average wind speed of 

4m/s for small wind turbines and 5.8m/s for utility-

scale turbines. A study conducted by [42]  utilized a 

scale temporal-spatial data approach to point out that 

Limpopo province has a low potential for utility 

wind turbines as the province has an annual average 

wind speed which is less than 4 m/s. [43] supported 

that Limpopo province like has low potential for 

wind turbine as it has an average annual wind speed 

of 3.05m/s, which is not enough for even small scale 

wind turbine. Another factor is that wind turbines 

function successfully in locations with dense air flow 

and those locations are found near oceans and 

Limpopo is in high altitudes [44].  

3. Methodology

3.1. Description of the selected site 

Limpopo province is found in the northern part of 

South Africa. The province shares borders with 

Mozambique, Zimbabwe, and Botswana [45]. The 

province has the potential for geothermal energy 

[38], wind turbines [46] and hydropower [47]. The 

site mainly utilizes solar PV and biomass as 

renewable energy resources. 

3.2. Models of available and potential 

renewable energy resources 

Table 1 describes the principles of operation for 

existing renewable energy technologies and potential 

renewable energy technologies in Limpopo province. 

The principles of operation show the models for 

output power of solar PV, biomass energy, 

hydropower, wind turbine, and energy and efficiency 

generated by geothermal technology. 
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Table 1. Models of available and potential 

renewable energy resources 

Technologies Models 

Solar PV 𝑃𝑃𝑉 = 𝜂𝑃𝑉 ∗ 𝐴𝑃𝑉 ∗ 𝐼𝑃𝑉   (1) 

Biomass 
𝑃𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =  

𝐵𝑄𝐿𝐻𝑉  𝜂𝜂𝑏𝑖𝑜𝑔𝑎𝑠

3600
(2) 

Hydropower 𝑃ℎ𝑡 =  𝜂ℎ𝑡 ∗ 𝜌𝑤 ∗ 𝑔 ∗ 𝜓𝑛𝑒𝑡 ∗ 𝑄𝑡(3)

Geothermal 
𝜂𝑇 =

𝑊𝑇

𝑊𝑇𝑆

=
�̇�𝑟𝑒𝑓(ℎ1−ℎ2)

�̇�𝑟𝑒𝑓(ℎ1−ℎ2𝑠)
 (4) 

𝑊𝑡 = �̇�𝑤𝑓(ℎ1 − ℎ2)  (5) 

Wind turbine 𝑃𝑤𝑡𝑔 =
1

2
𝜌𝐴𝑣3𝐶𝑝𝜂𝑔𝜂𝑏  (6) 

Table 1 describes the available and potential 

renewable energy technologies and their models. The 

model’s symbols are described as follows: On solar 

PV, 𝑃𝑝𝑣, 𝜂𝑝𝑣, 𝐴𝑝𝑣 and  𝐼𝑝𝑣 are the power output of

PV, PV module efficiency, surface area of the PV 

system, and solar irradiance. On wind turbine,𝑃𝑤𝑡𝑔,

𝜌, A, V, 𝐶𝑝, 𝜂𝑔 , 𝜂𝑏  are wind power output, air swept

density, swept area, speed, coefficient performance, 

generator efficiency, and gear efficiency. On 

hydropower, Pht, 𝜂ℎ𝑡, g,  𝜌𝑤, 𝜓𝑛𝑒𝑡 , 𝑄𝑡 are power

output of hydropower, HT efficiency, gravitational 

acceleration, density of water, net head, and flow rate 

[48] . On biomass energy B is biomass materials

consumed, QLHV is the low calorific value of biogas,

η is biogas generator efficiency, ηbiogas is gasification

efficiency and Pbiogas is biogas output power [22] . On

geothermal, ηT, WT, WTS, h4, and h4s are turbine

isentropic efficiency, turbine power, and isentropic

turbine power, refrigerant enthalpy at outlet

turbine/inlet condenser and refrigerant isentropic

enthalpy at outlet turbine/inlet condenser [39].

4. Review of available and potential

renewable energy technologies

4.1. Existing renewable energy technologies 

The following section assesses the performance of 

existing renewable energy technologies. Those 

technologies include solar PV and biomass. 

4.1.1. Solar PV 

In the village of Mpheni, the sizing of a solar PV 

system has been done. The village has a population 

density of about 50 houses. One house is estimated to 

have a load of 7.846 kWh which means the generated 

power of 372 kW is satisfactory [49]. A 31 MW solar 

PV plant in Soutpan solar plant generates about 61 

000MWh/year, feeding 22kV to the Eskom 

distribution grid system and serving about 13 000 

South African homes. A 33MW Witkop Solar plant 

commissioned in 2014 generates 62 000MWh/year 

of electricity for the utility grid [50]. A 66MW Tom 

Burke solar plant is a successful operating plant in 

Limpopo. The plant generates a capacity of 66 MW 

and can generate up to 122 000 MWh/year of energy. 

[15]. The village of Gwakwani has about 40 houses. 

One house has an estimated load of 126Wh per day 

[10]. Schneider Electric and the University of 

Johannesburg donated and installed 750 W solar 

panel water irrigation systems, a 12V rooftop PV 

system capable of lighting and charging a cell phone 

at home. A 15kW solar PV runs in the local bakery 

[11]. A solar system in Vuwani Science Center has 

been assessed using estimated global solar 

irradiation. A solar system assessed generates power 

of 225W. The system is operational in the Vuwani 

Science Resource Center [7]. 

4.1.2. Biomass and biogas 

Limpopo province is ranked 2nd for biomass usage 

in the country [51]. Therefore, we have about 100 

installed bio-digesters in the province [22] and  [52]. 

In Vhembe district, fixed dome bio-digesters have 

been built with the support of the South African 

National Energy Development Institute (SANEDI) in 

Chavani village for agricultural waste-to-energy 

conversion [23]. The Mafuneko solution project at 

Gawula village near Giyani uses cow dung as feed 

material for a fixed dome digester that generates 

biogas sold to locals at low prices. The project has 

created employment and skills, and commuters use 

biogas for cooking [53]. The waste-to-energy 

technology project in Capricorn district, driven by 

the University of Venda in collaboration with 

UNIDO (United Nations Industrial Development 

Organization) to turn waste into biogas energy is 

successful [54]. Biogas technology in Limpopo 

dairies uses project feedstock type of dairy waste. 
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The digester technology is IBR (Induced Bed 

Reactor). The di-gestate is then used as a wet or solid 

fraction and supplied to farmers for land fertilization 

[54]. Tzaneen municipality utilizes a fixed dome bio-

digester for wastewater treatment, and it is 

responsible for producing dried sludge for farmers 

for land application [55]. Two fixed dome bio-

digesters have been built at Makhado military bases 

for cooking and waste management. Those bio-

digesters are advantageous as they eliminate waste 

leftovers from the kitchen and produce manure for 

farmers [56]. Humphries methane recovery and 

electricity generation project utilized anaerobic 

digestion swine wastewater treatment to generate 

methane gas the community uses for cooking and 

heating [57]. 

4.2. Potential renewable energy technologies 

The following section assesses the performance of 

potential renewable energy technologies. Those 

potential technologies include geothermal, wind 

turbines, and hydropower. 

4.2.1. Hydropower 

Tubatse hydroelectric plant is the pumped storage 

hydropower built by Eskom and it is anticipated to 

generate 1500MW of power. The plant hasn’t been 

commissioned yet [58]. This shows that with the 

flowing rivers, the province has hydropower 

potential. 

4.2.2. Geothermal 

In three regions in Limpopo (Waterberg, 

Drakensberg, and Soutpansberg) there are about 23 

thermal springs [59]. According to the Council for 

Geosciences, one of the most promising areas for 

drilling for geothermal energy is in the thermal 

spring of Tshipise. The spring has a temperature of 

580C and a flow rate of 10 L/s [37]. There is a 

potential for a 75 MW geothermal plant at Makuleni, 

the area falls under the Limpopo belt [38]. 

4.2.3. Wind Turbine 

Wind turbine energy is less potential renewable 

energy in the province as the province has a high 

altitude and that makes wind less dense to have the 

capacity to rotate wind turbine blades sufficiently 

[60]. [61] Layered out each province’s available and 

potential renewable energy and wind potential in 

Limpopo is at low reference. A study conducted by 

[42] utilized a mixed-scale temporal-spatial data

approach to point out that Limpopo province has low

potential for utility wind turbines as the province has

an annual average wind speed which is less than

4m/s. [43] supported that Limpopo province has a

low potential for wind turbines as it has an average

annual wind speed of 3.05m/s, which is not enough

for even small-scale wind turbines.

5. Conclusion

This paper has reviewed publications on available 

and potential renewable energy technologies for 

Limpopo province. Two questions were responded 

to. The 1st question addressed technologies behind 

available and potential renewable energy resources. 

The evaluation showed that Solar PV and biomass 

are the most utilized renewable energy in the 

province. The demand behind solar PV is due to its 

affordability, costs that account for manufacturing 

and installations only, and favorable geographical 

location. The reason behind biomass usage is the 

availability of biomass material in various locations 

and the impact minimization of energy costs for 

households. The 2nd question addressed the 

successful integration of available renewable energy. 

The evaluation showed that most solar PV projects 

implemented, operate at expected efficiency, but 

some small-scale solar systems failed to deliver due 

to negligence and poor maintenance by customers.  

This paper finally acknowledges the availability of 

potential renewable energy resources: wind turbine, 

hydropower, and geothermal energy though they are 

not yet fully implemented due to financial 

constraints. 

Future work in this study field will look at the 

economic analysis of those renewable energy 

resources in the Limpopo province. More attention 

will be on their economic feasibility based on Net 

Present Costs and Costs of Energy. 
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Abstract: There has been significant research on the relationship 

between current-voltage (I-V) curve characteristics and 

electroluminescence (EL) module defects. Current methods use 

EL image pixels to develop features, which are then correlated 

with module I-V curve characteristics. In most cases, image 

thresholding is used to gather pixel information. These 

approaches have two major limitations. First, they lack 

generalisability, as imaging conditions may vary from module to 

module, and thresholding algorithms are often developed for 

specific types of defects or imaging conditions. Second, the 

correlation between specific types of defects and I-V features 

cannot be studied because all defects are grouped into one high-

level defect detected by a sharp change in pixel intensity. In this 

paper, we conduct a correlation study between EL defects and I-

V curve characteristics of photovoltaic (PV) modules that were 

exposed to accelerated stress testing. We correlate power loss 

and two common EL defects. The defects are detected and 

quantified using a prediction model based on semantic 

segmentation in which each pixel is assigned to one of multiple 

classes. Results obtained indicate that the defect detection tool 

can be used to correlate power loss with dark cells and cell 

cracks. A significant amount of variability  in output power delta 

can be explained by defects detected by the prediction model  (r2 

= 72%). 

Keywords: Cell cracks; Electroluminescence image defect 

detection; I-V curve characteristics; deep learning; PV module; 

semantic segmentation. 

1. Introduction

The ongoing adoption and installation of solar PV with the 

intention of moving to sustainable energy generation has 

necessitated the need to understand module lifetime performance 

and gain insights into the mechanisms causing module 

degradation [1]. Current-voltage (I-V) curve tracing and 

electroluminescence (EL) imaging are two of the commonly 

used techniques for characterising a PV module. I-V curve 

tracing performs a complete electrical sweep from short circuit 

current to open circuit voltage of an illuminated PV module [2]. 

The I-V curve characteristics alone cannot be used to determine 

specific degradation mechanisms leading to power loss. 

However, EL imaging rich spatial information that can help to 

understand the performance and condition of a module [3]. Due 

to the vital role that both I-V curve tracing and EL imaging play 

in the characterisation of a PV module, there has been a huge 

research effort aimed at finding the correlation between I-V 

curve characteristics of a PV module and the module defects 

found on the corresponding EL image [1]–[6]. Such studies can 

aid the development of algorithms that can estimate the I-V 

characteristics of a module. The ability to estimate module I-V 

features from EL images can enable high-speed in-situ power 

estimation for fielded PV modules and a framework for 

understanding large-scale mechanistic degradation of PV 

modules at high resolution. In addition, such a framework can be 

used across different facets of the PV community to improve 

speed, quality, and usefulness of cell and module-level image-

based characterisation.  

A host of the existing approaches use the EL image pixel 

intensities to derive hand-crafted features that describe the 

defects found on the EL image of the module. Approaches that 

use hand-crafted features derived from image pixel information 

have two major limitations. First, the approaches have limited or 

lack of generalising ability because imaging conditions may 

change from module to module and the thresholding algorithms 

are often developed for specific type of defects or imaging 

conditions. Second, the correlation between specific type of 

defects and the I-V features cannot be studied because all defects 

are grouped into one high-level defect that is detected by sharp 
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change in pixel intensity. Studying the correlation between 

specific defects and I-V features can help us understand low-

level details about the performance of a module.  

In this paper, we conduct a correlation study between two 

specific EL defects and I-V curve characteristics of PV modules 

that were exposed to accelerated stress testing at the CSIR PV 

Module Quality and Reliability Lab (PVQRL). The I-V data was 

measured on the indoor sun simulator and the EL defects were 

detected using a deep learning semantic segmentation-based 

model that was trained to detect and quantify common defects in 

solar cells. 

2. Related work

The correlation of I-V curve characteristics and EL defects has 

received a lot of attention in the literature. The first work that 

investigated the impact of EL defects on module performance 

was presented by Köntges et al. [7]. In the paper, the direct 

impact of micro-cracks on the module power and the 

consequences after artificial aging were analysed. According to 

the results of the experiment, artificially initiated micro-cracks 

in the silicon wafer did not impair the electrical contact between 

cell fragments and did not reduce solar power generation by 

more than 2.5 %. It was found that cracked cells are correlated 

with power degradation after the accelerated ageing test, and that 

power loss follows a linear pattern over time. Since then, there 

has been significant research effort directed at investing the 

correlation of EL defects with I-V curve characteristics.  

Existing methods investigate correlation between I-V curve 

characteristics and EL defects that are quantified using the pixel 

intensities of EL images. The I-V curve characteristics are 

typically obtained using a sun simulator. Typical characteristic 

values measured and derived from the module I-V curve include 

maximum power (Pmp), fill factor (FF), current at maximum 

power (Imp), voltage at maximum power (Vmp), current at short 

circuit (Isc), voltage at open circuit (Voc), series resistance (Rs), 

and shunt resistance (Rsh) [2]. To quantify EL defects, some 

researchers convert the EL images to grayscale and use the raw 

pixel intensities to calculate the median, mean, and standard 

deviation [2], [8]. For example, Karimi et al. [8] demonstrated 

the quantification of generalized and performance mechanism-

specific EL image features using pixel intensity-based and 

machine learning classification algorithms. The research 

employed two stress testing methods: 3000 hours of damp heat 

exposure with measurements at 500-hour intervals for 15 

modules, and 600 cycles of thermal cycling with measurements 

taken every 200 cycles for another 15 modules. This yielded 

11,700 EL images from the 30 modules tested. Each cell-level 

image was analysed, resulting in four hand-crafted features being 

extracted, including the busbar corrosion ratio (BBCR). The 

research reported strong correlations between the features 

extracted from EL images and I-V characteristics. The study also 

uses a convolutional neural network to classify cells by the 

severity of busbar corrosion. In addition, researchers developed 

models to predict PV module I-V features from EL image 

characteristics, especially ribbon corrosion. 

Some researchers [4], [9] also use image thresholding and edge 

detection techniques to enhance and localise module cracks. The 

area of a crack is then used to quantify the crack defect. For 

example, Wu et al. [4] used MATLAB’s “im2bw(I, level)” 

function to perform image thresholding using different “level” 

values to capture and quantify module dark areas (cracks and 

inactive areas) using pixel intensity percentages. In their results, 

total pixel weight percentage of EL image dark areas and fill 

factor demonstrated a linear correlation with an r2 value of 86.5 

%. Likewise, Whitaker et al. [9] conducted a correlation study 

between I-V curve characteristics and EL image defects. The EL 

defects were quantified using an image thresholding algorithm 

called black top-hat transform. The black top-hat filter enhances 

dark cracks in a bright background; thus, it isolates darker pixels 

from brighter neighbouring pixels.  

In this paper, we use a deep learning semantic segmentation EL 

defect detection tool to detect and quantify defects on EL images 

taken before and after accelerated stress testing. A study is then 

conducted to investigate possible correlations between the 

quantified defects and I-V curve characteristics of the PV 

modules. To the best of our knowledge, there is no study that 

investigates the correlation between EL defects quantified by a 

deep learning semantic segmentation algorithm.  

3. Methodology

3.1. Solar cell defect detection overview 

Solar cell defect detection (SCDD) on EL images is performed 

using a deep learning semantic segmentation model called 

Deeplabv3 [10]. The model was adapted for the task of defect 

detection on EL images using the source code provided by the 

authors on their official GitHub repository. The model was 

adapted using the three-step development process shown in Fig. 

1. The reader is encouraged to refer to our previous work [11],

[12] for details on the implementation and training details as they

are beyond the scope of the current work.
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Fig. 1. Three-step development process of the SCDD model. 

3.2. EL defects vs I-V curves correlation 

The EL images and I-V curves were collected during a PV 

module reliability program conducted in 2019-2020 at the CSIR 

[13]. PV modules with four different ‘bill-of-materials’ (BOMs) 

were subjected to a series of accelerated stress tests according to 

the methods described in the IEC 61215:2016 international 

standard for PV module design qualification and type approval. 

The accelerated stress tests are designed to simulate real-world 

stresses in a controlled lab environment for certification testing. 

The PV Module Testing Protocol for Quality Assurance 

Programs described in the ANSI C450-18 is a public standard 

designed for long-term reliability testing of PV modules based 

on the IEC 61215 series in which the certification tests are 

conducted repeatedly. For example, a certification test per IEC 

61215 requires 200 thermal cycles and the C450 requires 600 

thermal cycles with a characterization sequence every 200 

cycles. The characterisation sequence includes EL images and I-

V measurements. The characterization sequence was conducted 

on each module as received at the lab and again after each step 

in the stress testing sequence, generating nearly 200 EL images 

and IV curves (Fig. 2).  

Fig. 2. Methodology used for the EL defects vs. I-V 

correlation study. 

The I-V curves were generated on an indoor sun simulator at the 

CSIR PVQRL. The sun simulator is designed to measure the 

electrical characteristics over a range of temperatures and 

irradiance levels. A module is loaded into the integrated 

temperature chamber (Fig. 3) to control temperature while the 

irradiance level is controlled by the energy applied from a 

capacitor bank to the xenon arc lamp. The temperature chamber 

has a glass door to allow the light to hit the module and the 

irradiance level is monitored by a reference cell that is co-planar 

with the PV module. During a C450 reliability sequence, most I-

V curves are conducted at standard test conditions (STC) defined 

as 1000 W/m2, 25 °C cell temperature, and a light spectrum 

consistent with the natural sunlight at an airmass of 1.5.  

Fig. 3. PV module mounted inside the sun simulator 

thermal chamber with glass door. 

The correlation analysis was conducted using simple linear 

regression and summarized by the coefficient of determination, 

or the square of the Pearson’s Correlation Coefficient (r2). The 

dataset consisted of matched pairs for each module at each 

characterization step. The pairs consisted of an IV characteristic 

and an output from the SCDD model. Table 1 shows a subset of 

the data used in this study. Row 1 shows a record for the ‘dark 

cell’ defect on Module 1 at the initial inspection. The initial 

maximum power (Pmp) serves as the reference point for 

subsequent IV measurement, so the delta to initial = 0. The 

percentage defective shows the output of the SCDD model 

averaged over all the cells in the module. At this stage, the SCDD 

model did not detect any ‘dark cell’ defects in any of the cells. 

The second row shows the results on the same module after the 

potential inducted degradation (PID) stress test. The module 

power decreased by 6.8% and the SCDD model predicted 1.77% 

of the pixels were likely from dark cells, on average. The bottom 

half of the table shows a similar example for one module after 

the thermal cycling sequence. After 600 thermal cycles (TC600), 

the module power decreased by 1.1 % and the percentage 

defective increased to 0.52 %. This study focuses on maximum 

power measurements (Pmp) versus dark cells after PID and 

cracks after thermal cycling.  
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Table 1. Sample records of the dataset used for the 

correlation analysis. 

Defect 
Module 

ID 
Sequence 

Pmp Delta 

to Initial 

(%) 

Percentage 

Defective 

(%) 

Dark cell 1 Initial 0.0 0.00 

Dark cell 1 Post PID 6.8 -1.77 

Dark cell 2 Initial 0.0 0.00 

Dark cell 2 Post PID 9.9 -2.19 

Crack 1 Initial 0.0 0.06 

Crack 1 Post TC200 -0.2 0.07 

Crack 1 Post TC400 -0.5 0.48 

Crack 1 Post TC600 -1.1 0.52 

The r2 value from the linear regression quantifies the proportion 

of the variation in the dependent variable (y-axis) explained by 

the independent variable (x-axis). For example, Fig. 4 shows the 

least squares line for maximum power (Pmp) versus current at 

maximum power (Imp) for a subset of the modules analysed in 

this research. The r2= 0.99, meaning 99 % of the variability in 

the Pmp can be explained by the variability in Imp. While 

correlation does not prove causation, in the case of I-V 

characteristics this relationship does imply causation because a 

higher current output will lead to higher power output.  

Fig. 4. Simple linear regression of maximum power (Pmp) 

delta to initial versus current at maximum power (Imp) 

delta to initial (r2 = 0.99). 

Table 2 shows the key statistics for the analysis of variance from 

the linear regression model. The sum of squares error (SSE) 

quantifies the residual errors, specifically the value represents 

the sum of the squared residuals. The sum of squares total (SST) 

quantifies the variance in the Pmp, specifically the value 

represents the sum of squared differences between the Pmp and 

the average of the Pmp. The sun of squares model (SSM) is the 

difference between the SST and the SSE. The ratio of the SSM 

over SST equals the r2. In this case, 99 % of the variability in the 

Pmp is explained by the Imp.  

Table 2 Analysis of variance summary statistics for the 

linear regression analysis. 

Description Value 

Error Sum of Squares (SSE) 350 223 

Model Sum of Squares (SSM) 31 562 191 

Total Sum of Squares (SST) 31 912 413 

R2 0.99 

4. Results and analysis

4.1. Module output power vs. dark cells post PID 

Fig. 5 shows the correlation between module power loss (delta 

to initial Pmp) and the percentage of dark cell pixels predicted 

by the SCDD model. A subset of the dataset was described in 

Section 3.2 for clarity. An r2 value of 55% was obtained from the 

analysis of variance table as described in Table 2. This indicates 

that 55% of the decrease in Pmp can be explained by the increase 

in the dark cell percentage. The point representing SASC_00145 

module was an outlier with respect to the regression model. With 

the outlier excluded, an r2 value of 78% percentage was obtained. 

This demonstrates the significant impact the outlier had on the 

correlation analysis. Further investigations were made to 

understand the behaviour of the SASEC_00145 observation. 

Fig. 5. Regression analysis between delta output power and 

percentage of dark cells predicted by SCDD. 
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We investigated the effect of pre-processing methods applied to 

the EL images before prediction by the SCDD tool to better 

understand the SASEC_00145 outlier. Specifically, we studied 

the influence of the brightness of an EL image on the ability of 

the SCDD tool to predict and quantify dark cells. Fig. 6 shows 

the correlation between the module power loss (delta to initial 

Pmp) and the percentage of dark cell pixels predicted by the 

SCDD model after reducing the brightness of the original EL 

image of the SASEC_00145 PV module by 50%. The percentage 

of dark cell pixels predicted by the SCDD model increased after 

reducing the brightness, and the resulting r2 value increased by 

17% (from 55% to 72%). This suggests that pre-processing 

methods that change the brightness of EL images impact the 

prediction of dark cells.  

Fig. 6. Regression analysis between delta output power and 

percentage of dark cells predicted by SCDD after 

darkening the PV module. 

The bias current applied during EL imaging can also impact pixel 

brightness. Fig. 7 shows the change in the percentage of dark cell 

pixels in the pre- and post-stress EL images recorded at 100 % 

of Isc current and in the post-stress EL image at 10 % of Isc 

current. The percentage of pixels predicted as dark cells 

increases significantly when the current bias is decreased from 

100 % of Isc current to 10 % of Isc current, as per the 

international standard. The IEC TS 62804-1 describes the test 

methods for the detection of potential-induced degradation. In 

that technical specification, the test sequence includes EL 

imaging at both 100 % of Isc current and 10 % of Isc current 

because the PID degradation is more easily seen to the human 

observer at the low bias setting It follows that the SS model 

would also detect more dark cell pixels in images taken at low 

bias. Unfortunately, the pre-stress EL images at 10% of Isc were 

not available to assess the percentage of dark cell pixels at that 

bias current prior to the stress.   

Fig. 7. Percentage of dark cells post PID at different levels 

of bias current. 

4.2. Module output power vs. cracks after thermal cycling  

Fig. 8 shows the correlation between module power loss (delta 

to initial Pmp) and the percentage of crack pixels predicted by 

the SCDD model for each module from one BOM that was 

subjected to thermal cycling. Based on the Pmp delta and 

cracked cell percentage values, an r2 value of 55% was obtained. 

This indicates that 55% of the change in Pmp can be explained 

by the change in the percentage of crack pixels predicted by the 

SCDD model.  

Fig. 8. Regression analysis between Pmp delta and crack 

pixels average post thermal cycling. 

Fig. 9 shows the evolution of cell cracks on the three PV modules 

from one BOM during 600 hours of thermal cycling, using steps 

of 200 thermal cycles. From this figure, it can be observed that 

all three PV modules developed cracks after TC400. This was 

not expected since thermal cycling does not typically cause 

cracks, and none of the modules from the other three BOMs 

developed significant cracks. Interestingly, the cracks showed a 

similar pattern across all three modules with long, 45 ° diagonal 

cracks developing in the top left and bottom right corners.  
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Fig. 9. Variation of the percentage of cracked cells at 0, 200, 

400, and 600 thermal cycles. 

The sensitivity of crack detection to brightness post thermal 

cycling was also investigated. It was found that crack detection 

is robust to any brightness changes applied to the original image 

during pre-processing.  

5. Conclusion

This work investigated linear correlations between the output of 

a semantic segmentation model trained to detect defects in EL 

images and the corresponding IV characteristics of PV modules 

exposed to accelerated stress testing. The output power of PV 

modules that were subjected to damp heat and thermal cycling 

was correlated to the percentage of dark cells and the percentage 

of cracks, respectively. The results suggest that a significant 

amount of variability in output power loss can be explained by 

defects detected by the SCDD tool, although causation should 

not be implied. In addition, it was found that the prediction of 

dark cells using the SCDD tool is susceptible to brightness 

changes in the EL image made during post-processing and the 

electrical current bias applied during imaging. In contrast, crack 

detection is robust to brightness changes.  

Future work will include further investigations on the sensitivity 

of predictions using the SCDD model to image preprocessing.  
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Abstract: Photovoltaic module faults can arise due to several 

factors including damage caused during the manufacturing, 

transportation or installation processes, as well as damage caused 

by outdoor operational conditions such as bad weather. Such 

faults cause degradation of the PV system, and can result in 

major power loss and even fire hazards. This study compares the 

results of both optical and thermal image data for module-based 

PV fault classification. This classification is done according to a 

framework of twelve, IEC-aligned fault categories. These 

categories are based on the size, shape, intensity and pattern of 

faults, as seen mainly in thermal images. 

The results are obtained for both types of image data (optical, 

and thermal) using five pre-coded convolutional neural network 

architectures, namely: InceptionV3, ResNet50, Xception, 

MobileNet and VGG16. By comparing these two types of image 

data as input for classification analysis, results can be used to 

determine the best overall image data type for this task. It will 

also outline and emphasize the advantages to using each type of 

image data individually. 

Keywords: Photovoltaic Fault Detection; Photovoltaic Systems; 

Deep Learning; Convolutional Neural Networks 

1. Introduction

Due to the imminent and growing threat of global warming, a 

shift towards renewable energy in recent decades aims to reduce 

carbon dioxide emissions worldwide. Photovoltaic (PV), or solar 

power, systems are one of the main sources of renewable energy 

production [1]. PV energy production offers both environmental 

and commercial advantages, and the maintenance of such 

systems is of paramount importance to reap the greatest rewards 

possible. The maintenance on large-scale PV plants, with regards 

to fault detection and classification, can be extremely cost and 

labour intensive. Undetected PV faults that are left for an 

extended period of time can cause substantial power loss and 

safety breaches [2]. If left undetected, without proper 

maintenance, these faults can drastically reduce the power 

production output and, in turn, the plant’s overall profits. 

Past research [3, 4] has shown that using convolutional neural 

networks (CNNs) and thermal imagery to detect and classify PV 

faults is both efficient and accurate when compared to feature-

based approaches using machine learning techniques such as 

support vector machines and random forests. As a result, five 

pre-coded CNN architectures were chosen for this study, mainly 

due to their good performance in past studies [3, 4], as well as 

their performances in past ImageNet Large Scale Visual 

Recognition Challenges (ILSVRC). The selected architectures 

are: InceptionV3 [5], ResNet50 [6], Xception [7], MobileNet [8], 

and VGG16 [9]. Pre-coded CNNs are usually pre-trained on 

general items such as people, animals and objects, using large 

datasets. Making use of these pre-trained models and their 

associated weights is known as transfer learning, and it may 

benefit researchers by decreasing training times, as well as 

lowering generalization errors [10]. The difference between 

training CNN models from scratch and using the above transfer 

learning approach is also investigated. 

2. Related Work

2.1. Renewable Energy and Photovoltaic Systems 

The rapid growth of the global population has resulted in an 

exponential demand for energy. Non-renewable sources of 

energy such as coal and other fossil fuels are still, however, the 

main contributors to the energy sector [11]. Greenhouse gases, 

such as carbon dioxide, methane, and nitrous oxide, are emitted 

in large quantities during the combustion process of fossil fuel, 

all of which contribute heavily to the ever-growing problem of 

climate change [11]. A transition to renewable energy resources 
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will reduce greenhouse gas emissions, and reduce the effects of 

climate change as a whole. One type of renewable energy 

resource is solar power, where energy is harvested from the sun 

and converted into electricity. This is a reliable and 

environmentally sustainable method of producing electricity 

which emits little to zero greenhouse gases [12]. Solar energy, 

produced by PV systems, falls under the category of mainstream 

renewable energy sources, due to its popularity in both the public 

and private sectors across the globe [11]. 

2.2. Photovoltaic Faults and Infrared Thermography 

Mansouri et al. [13] categorizes PV module faults into five 

common groups, namely: mismatch faults, bypass diode faults, 

connectivity faults, ground faults, and partial shading faults. 

Depending on the type of fault present in an affected module, 

various heating patterns and intensities can be observed. This is 

where PV module fault detection and classification using 

thermal (or infrared) image data can be applied. By analysing the 

heating patterns, temperature intensities and shapes of faults 

found in thermal images of PV modules, researchers are able to 

use deep learning techniques such as CNNs or artificial neural 

networks to detect and classify faults according to a 

classification schema or framework. The framework used and 

investigated in this study is an adaption of that of Bommes et al. 

[14], which adheres to the International Electrotechnical 

Commission’s guidelines [15]. This framework compromises of 

fourteen PV module fault classes, including a non-faulty class, 

and is based on the shapes, patterns, intensities and overall 

maintenance issues relating to each fault class. 

2.3. Convolutional Neural Networks 

Convolutional neural networks, or CNNs, are a type of deep 

learning algorithm that started gaining popularity in 2012 [16]. 

This was largely due to the effectiveness of CNNs in reducing 

the number of parameters without losing on the quality of models 

[17]. They have since become the most successful algorithm in 

the field of image processing, including image classification, 

recognition, semantic segmentation, and machine translation 

[18]. Although more complex CNN architectures require large 

amounts of computational power and resources, they have been 

shown to produce reliable results that are both useful and 

beneficial in real world problems [19]. The main advantage of 

CNNs when compared to other deep learning techniques is that 

they are able to detect significant features independently, without 

any human supervision [20]. Robust CNNs should be trained 

using large datasets of images and their associated classification 

labels [21], for example: thermal images of PV modules and their 

associated fault types (as labels). 

2.4. Photovoltaic Fault Classification 

Once fully trained, the CNNs can interpret unseen data and 

predict or classify the data according to the framework used 

during training. Past research into this topic [3] investigated a 

three-class PV fault problem using thermal images of modules, 

and produced classification accuracies of 92% using pre-coded 

CNNs. Another study [4] investigated a four-class PV fault 

problem using thermal images, and obtained a k-fold average 

accuracy of 89.5% for classification with CNNs. Herraiz et al. 

[21] used region-based CNNs to automatically detect relative hot

regions of solar plants. This study produced an automatic

detection accuracy of 99.02% for the binary fault/no-fault

problem, and showed that thermal imagery is a good choice for

PV fault detection analysis. Another study by Prajapati et al. [22]

used thermal imagery for the detection of faults in PV modules,

using the YOLO architecture for real-time fault detection and

identification. The study achieved a maximum average accuracy

of 83.86% for a five-class problem. Haidari et al. [23] made use

of thermal images for a three-class PV fault classification

problem, including a non-faulty class using the VGG16 model,

and obtained an accuracy of 98.00%.

Other studies have used CNNs for PV fault classification using 

electroluminescence (EL) data [24, 25]. Akram et al. [24] 

presented a novel approach for the automatic detection of PV cell 

faults using a light CNN architecture and EL images. This 

approach required low computational power and time, and 

produced an average accuracy of 93.02% for fault detection. 

Deitsch et al. [25] presented a tuned-version of the VGG19 

architecture used for the detection of faulty PV cells in high-

resolution EL images. This CNN model achieved an average 

accuracy of 88.42%, which was higher than the 82.44% obtained 

by a support vector machine model investigated in the same 

study. Standard electroluminescence image data must, however, 

be captured at very controlled conditions, making it non-viable 

for large-scale PV systems with hundreds of thousands of PV 

modules. Due to the relative ease in which both thermal and 

optical image data of such PV systems can be captured, they 

were chosen as the main focus in this study. 

Although thermal and EL imagery have been the main focus of 

PV classification research in the past, there have been a few 

studies which investigate the use of optical images too. Cavieres 

et al. [26] makes use of optical image data for the detection and 

classification of soiling and partial shading faults in PV modules. 

This study proposes a custom CNN which produces a maximum 

accuracy of 73.00%. Although this study is promising, it is noted 

by the authors that a greater range of image data is required for 

more robust testing. Another study by Espinosa et al. [27] makes 

use of CNNs and optical image data for both PV fault detection 

and classification. This approach produces maximum accuracies 

of 75.39% for fault detection and 70.00% for fault classification. 

The authors, once again, refer to the dataset as being small, and 
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more data being beneficial for future work and results. It is 

conjectured that including optical images may improve on 

classification results, due to the extra information obtained for 

some of the PV fault classes from this type of data, namely: 

soiling, shading, and vegetation. 

3. Data and Methodology

3.1. Data and Classification Framework 

The thermal image data for this study was collected at ten large-

scale PV systems in South Africa. The locations of these PV 

plants cannot be disclosed due to a privacy agreement with the 

supplier. Both the thermal and optical images were collected in 

the same manner. An unmanned aerial vehicle (or UAV) 

equipped with both optical and thermal imaging cameras was 

flown over the PV plants, and images were captured at a high 

level. This means each image taken and stored by the UAV 

shows multiple PV modules. Once these high-level images were 

captured and stored, they were then cropped to show individual 

PV modules, resulting in a larger dataset of individual modules. 

The images were named according to an ID given to each module 

on the PV site where they are located. A total of 9 028 thermal 

images were collected, where 1 562 were non-faulty modules 

and 7 470 were faulty modules. Similarly, a total of 9 028 optical 

images were collected. The thermal images were then 

categorized and sorted into the twelve, IEC-aligned classes as 

given in the classification framework. Thereafter, the optical 

data was matched to its corresponding thermal data using the 

name IDs, and was sorted into its respective classification 

framework classes for analysis. This resulted in two datasets for 

analysis, one thermal and one optical, which matched each other 

in their structure and sorting. The class composition of these two 

datasets is given in Table 1.  

Table 1. Class composition of the thermal and optical 

datasets (9 028 images each) 

Fault Class Number of 

Images 

Percentage 

Warm Cells (C) 193 2.12 % 

Hot Spot (Chs) 244 2.68 % 

Hot Cell Multi (Cm+) 542 5.95 % 

Diode Overheat (D) 2 063 22.66 % 

Junction Box (J) 357 3.92 % 

Module Short Circuit (Mp) 170 1.88 % 

Non-faulty (N) 1 562 17.16 % 

Soiling and Shading (S) 1 067 11.74 % 

Substring Open Circuit (Sh) 816 8.96 % 

Hot Cell Single (Sm+) 733 8.05 % 

Substring Short Circuit (Sp) 478 5.26 % 

Vegetation (V) 803 8.82 % 

As mentioned previously, this framework was adapted from the 

study of Bommes et al. [14], which proposes fourteen fault 

classes according to their shape, heat intensities and overall 

maintenance issues. It also includes a non-faulty class, which 

assists PV maintainers in knowing which modules are 

functioning correctly. This framework was further adjusted to a 

twelve-class framework, due to the low amounts of data for two 

of the fourteen classes, namely: Module Open Circuit (Mh), and 

Potential Induced Degradation (PID). 

3.2. Classification Methods and Implementation 

Five pre-coded CNNs were chosen as the main focus of this 

classification analysis. In order to employ these CNN 

architectures within Python 3.6.5, the tensorflow package was 

used. This package was first developed by machine learning 

engineers from the Google Brain team within Google’s AI 

organization [28], as a means to implement deep learning 

techniques and artificial neural networks in Python. Tensorflow 

has become increasingly popular for machine and deep learning 

research over the last decade due the relative ease in which it can 

be implemented. The inclusion of being able to use transfer 

learning in CNNs makes this package extremely beneficial for 

this study. 

The InceptionV3 CNN architecture was introduced to the Keras 

[29] library in 2015, where the ‘V3’ refers to it being the third

version of the Inception architecture released by Google [5].

InceptionV3 was designed for higher computational efficiency,

and having notably fewer parameters than the original model.

The ResNet50 (or ResNet) architecture was introduced by

Microsoft in 2015 [6]. This architecture makes use of ‘shortcut’

paths, allowing it to learn identity functions which ensure

performance is at least as good as the normal path layer [30]. The

Xception architecture was proposed by the creator and chief

maintainer of the Keras library, François Chollet, in 2017 [7].

The Xception model is an extension and adjusted version of the

Inception model, where the standard Inception modules are

replaced by depth-wise separable convolutional layers [31]. The

MobileNet architecture, was first introduced by Google

engineers in 2017 [8]. This architecture was designed with two

main goals: less parameters and less complexity, meaning fewer

calculations during training [32]. Lastly, the VGG16 (or

ConvNet) architecture, was first introduced by engineers from

the University of Oxford in 2014 [9]. This architecture has only

16 layers, and was created to reduce learnable weight layers and
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parameters [33]. VGG16 proposed the use of a very small 

receptive filters throughout the entire network with the stride of 

1 pixel each time [34]. These five CNN architectures were 

analysed using tensorflow, as well as the Keras packages in 

Python. This analysis was performed on a workstation at Nelson 

Mandela University. The specifications of the workstation are 

given in Table 2. 

 Table 2: Computational / workstation specifications 

Workstation Components Specifications 

Processor (CPU) AMD Ryzen Threadripper 

1950X 

Operating System (OS) 64-bit Windows 10

Enterprise

RAM 128 GB 

Hard Drive 2 TB SSD 

Graphics Card (GPU) NVIDIA GeForce 

RTX3090 

The workstation available to this study should not have any 

performance-related issues in implementing the proposed 

methodology and analysis. 

4. Results

All classification analysis was performed over 100 epochs for 

each CNN, as this is where the model accuracies seem to 

stabilize during training. The use of both transfer learning (i.e. 

using Imagenet, or pre-trained, weights) and initializing the 

model weights is also investigated. The classification was 

performed separately using the two datasets, namely: optical, 

and thermal. The k-fold average accuracies, where k = 5, as well 

as the training and validation testing times, are provided for each 

data type and weighting approach (i.e. pre-trained/initialized) 

used. The value of 𝑘 = 5 was chosen as this value of k has been 

shown empirically to yield test error rate estimates that do not 

suffer from high bias nor high variance [35]. 

4.1. Optical Photovoltaic Fault Classification  

The optical dataset consisting of 9 028 optical images was 

analysed according to the methods described and the 

classification results for the pre-trained CNN architectures are 

provided in Table 3. 

From Table 3 it can be seen that the classification accuracies for 

the optical image data using the 12-class framework were poor, 

with no average accuracy exceeding 40%. Table 4 provides the 

optical classification results for the initialized CNN 

architectures, where no pre-trained weights are used. 

Table 3: Optical classification results (pre-trained weights) 

CNN k-Fold

Average

Accuracy

Training Time Validation 

Time 

InceptionV3 36.67 % 14h 27m 20s 22m 05s 

ResNet50 39.99 % 14h 24m 25s 16m 53s 

Xception 39.25 % 14h 28s 35s 18m 00s 

MobileNet 35.39 % 14h 01m 48s 12m 33s 

VGG16 23.26 % 14h 12m 54s 24m 06s 

Table 4: Optical classification results (initialized weights) 

CNN k-Fold

Average

Accuracy

Training Time Validation 

Time 

InceptionV3 28.35 % 14h 23m 40s 20m 10s 

ResNet50 26.53 % 14h 29m 59s 24m 28s 

Xception 30.31 % 14h 24m 12s 14m 58s 

MobileNet 22.99 % 14h 18m 16s 15m 01s 

VGG16 23.77 % 15h 06m 33s 15m 56s 

The classification accuracies for the optical image data using the 

initialized weights were lower than those obtained using the pre-

trained model weights. Using pre-trained weights, or transfer 

learning, provides models with a starting point for a problem, 

and allows for faster training. Transfer learning also offers a 

higher learning rate, and, in turn, higher accuracies after training 

since the model converges at a higher performance level [36]. 

The best-performing CNN architecture from the optical image 

analysis was the pre-trained ResNet50 model, which made use 

of transfer learning. By using its bottleneck design and ‘shortcut’ 

paths [30], the ResNet50 model is able to be trained faster than 

other CNNs [37]. This could be one of the reasons it is the best-

performing model in the optical analysis. This model is shown 

in Table 3, and obtains an average k-fold classification accuracy 

of 39.99%. The pre-trained models in Table 3 seem to 

outperform the initialized models in Table 4 slightly, having 

higher average accuracies four out of five times. The VGG16 

model seems to perform fractionally better when trained using 

initialized weights as opposed to using pre-trained weights, but 

its overall accuracies are sub-par. It should be noted that using 

initialized weights may take longer for the model to converge, 

and thus extra or additional epochs may be required. For the 

purpose of this study and results, however, the number of epochs 

was kept constant at 100 epochs. 
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4.2. Thermal Photovoltaic Fault Classification  

The thermal dataset consisting of 9 028 thermal images was 

analysed next. Table 5 provides the thermal classification results 

for the pre-trained CNN architectures. 

Table 5: Thermal classification results (pre-trained weights) 

CNN k-Fold

Average

Accuracy

Training Time Validation 

Time 

InceptionV3 80.09 % 12h 21m 14s 19m 14s 

ResNet50 82.56 % 12h 40m 37s 25m 33s 

Xception 82.78 % 12h 44m 33s 19m 29s 

MobileNet 77.83 % 12h 22m 17s 12m 18s 

VGG16 44.60 % 12h 19m 05s 28m 08s 

Table 6 provides the thermal classification results for the 

initialized CNN architectures, where no pre-trained weights are 

used. 

Table 6: Thermal classification results (initialized weights) 

CNN k-Fold

Average

Accuracy

Training Time Validation 

Time 

InceptionV3 71.47 % 12h 38m 46s 24m 44s 

ResNet50 75.10 % 12h 44m 07s 41m 20s 

Xception 74.77 % 12h 48m 56s 26m 50s 

MobileNet 60.83 % 12h 27m 58s 12m 11s 

VGG16 61.63 % 12h 33m 31s 15m 37s 

The best-performing CNN architecture from the thermal image 

analysis was the pre-trained Xception model in Table 5, which 

makes use of transfer learning. As an extension of the Inception 

model, the Xception makes use of depth-wise separable 

convolutional layers, which have been shown to improve 

classification performance [7]. This model obtained an average 

k-fold classification accuracy of 82.78%. It can also be noted that

the pre-trained models in Table 5 outperform the initialized

models in Table 6 four out of five times, which indicates that the

use of transfer learning in this type of classification using thermal

image data is beneficial to the model accuracies. The VGG16

model seems to perform better when trained from scratch as

opposed to using pre-trained weights. When compared to the

optical image data results, it is clear that, as expected, thermal

image data should be preferred for this type of PV fault

classification, with accuracy results roughly doubling in value.

4.3. Image Data Type Comparison 

When comparing the results obtained in Table 3 to Table 5, the 

pre-trained Xception architecture using thermal image data in 

Table 5 seems to be the best choice for PV fault classification, 

obtaining a k-fold average accuracy of 82.78%. This is followed 

closely by the pre-trained ResNet50 architecture using thermal 

image data in Table 6 as second-best, obtaining a k-fold average 

accuracy of 82.56%. It can also be noted that the pre-trained 

CNN models seem to perform better than the initialized models 

across both data types. Using the thermal images, the five pre-

trained CNNs have an average classification accuracy of 

73.57%, while the initialized models have an average accuracy 

of 68.76. This shows that using the pre-trained weights when 

training the CNN models is beneficial for future prediction and 

accuracy purposes in PV fault classification analysis, providing 

an average accuracy increase of 4.81%. When comparing 

training times, it should be noted that although the optical 

training seems to take longer than the thermal training, this is 

somewhat expected as the optical images are captured at a higher 

resolution  than the thermal images and, as such, the associated 

image data is larger in size than the thermal image data. 

Currently, the best FLIR thermal cameras record thermal images 

at a resolution of 1024 x 768 [36], which is much smaller than 

most optical images, which have a resolution of up to 8688 × 

5792 [39]. 

5. Conclusion

The primary aim of this research was to assess the accuracy of 

CNNs in classifying PV module faults using two different types 

of image data, namely: optical, and thermal. The classification 

analysis was performed using five pre-coded CNNs, comparing 

the difference between using pre-trained and initialized weights. 

From the results obtained, it was clear that using the thermal 

image data outperformed the optical image data in all analysis 

scenarios. The thermal image data type can therefore be noted as 

the best choice for PV module fault classification. 

When comparing the difference between using pre-trained 

weights and initialized weights, it is clear that for the better-

performing CNN architectures, the pre-trained weights aid in 

increasing the models’ classification accuracies. For the best-

performing, ResNet50 model in Table 3, we can also note a 

classification accuracy increase of 13.46% when using pre-

trained weights instead of initialized weights (in Table 4) for the 

optical data type. It can be noted that even though one expects 

the use of pre-trained weights to decrease the training and 

validation times, there is no indication that this is true when 

compared to the initialized weights training and validation times. 

The use of initialized weights would require more epochs for 

convergence, thus providing lower average accuracies overall 

131



when compared to the pre-trained models. To train the initialized 

models up to the same level of accuracy obtained using pre-

trained weights, one would need to increase the number of 

epochs quite drastically, increasing the training and validation 

times immensely. With regards to these computational times, it 

is therefore clear that the use of transfer learning, or pre-trained 

models, does in fact improve the convergence time.  

Future work will investigate a third type of image data, termed 

“opti-thermal”, which will be a combination of both optical and 

thermal image data. This will be done by layering the optical 

images over the thermal images, in an effort to improve 

information fed into the CNNs during training, since certain 

faults and issues such as vegetation, soiling and shading can be 

easily identifiable on the inspection of optical images. This, in 

conjunction with the thermal information, is envisioned to 

improve classification accuracies overall. 
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Abstract: This paper assesses the sensitivity of the spectral 

mismatch for three South African locations for two atmospheric 

conditions: aerosol optical depth at 500nm (AOD500) and ozone

(O3). Spectral data remains scarce, and this paper aims to

determine how to substitute the data when no spectral data is 

available, specifically in South Africa. The initial investigation 

identified that AOD500 has a more significant effect on spectral

irradiance than O3, which will also be more pronounced in

spectral mismatch calculations. Three corresponding SAURAN 

and AERONet databases were combined to assess the spectral 

mismatch sensitivity. The investigation showed that an estimated 

ozone value with the measured O3 had a negligible error in

spectral mismatch calculations, which prompted the second part 

of this investigation: to identify a way of predicting AOD500

using a lookup table using air mass, the clearness index or a 

combination of the two for different intervals. The investigation 

showed that a lookup table did not improve the error of 

estimating spectral mismatch using a constant AOD500 of 0.123.

Spectral irradiance and mismatch can be determined with 

reasonable accuracy using an estimated O3 and constant AOD500

when no spectral irradiance measurements are available.  

Keywords: Spectral Mismatch; Aerosol Optical Depth; Ozone; 

Sensitivity Analysis  

1. Introduction

The solar spectral irradiance at ground level is influenced by 

many atmospheric variables [1]. The spectrum influences the 

output of photovoltaic (PV) modules. Solar spectral irradiance is 

becoming more prevalent in atmospheric studies and solar 

energy [1].  

Most of the Sun's incident radiation on the top of Earth's 

atmosphere is distributed over the 290 to 3000 nm wavelengths. 

The spectral distribution of solar radiation depends on both local 

environmental conditions and the Sun's position [1]. The solar 

spectral irradiance is described using Bird’s model [2], which 

requires input variables, such as air mass (AM), aerosol optical 

depth at 500 nm (AOD500) and ozone (O3). In this paper, AOD

at 500 nm will be referred to as AOD500.

The relative spectral responses (SR) differ for PV technologies 

because different PV modules absorb the solar spectral 

irradiance differently between different wavelengths [3]. In 

addition, the short-circuit current 𝐼𝑆𝐶  is dependent on the

spectrum [4]: 

𝐼𝑆𝐶 = ∫ 𝑆𝑅(λ) ⋅ 𝐺𝑡𝑜𝑡(λ)𝑑λ (1) 

where 𝑆𝑅(λ) is the spectral response of the module, and 𝐺𝑡𝑜𝑡(λ)

is the combination of the irradiance sources on the module 

surface. Therefore, spectral irradiance and SR directly impact a 

PV module’s performance [3, 4].  

Spectral mismatch (MM) is defined as 

𝑀𝑀 =
∫ 𝐸

λ2
λ1

(λ)⋅𝑆𝑅(λ)𝑑λ ∫ 𝐸𝑟𝑒𝑓(λ)
λ4

λ3
𝑑λ

∫ 𝐸𝑟𝑒𝑓(λ)
λ2

λ1
⋅𝑆𝑅𝑟(λ)𝑑λ ∫ 𝐸

λ4
λ3

(λ)𝑑λ
. (2) 

λ1 and λ2 are the lower and upper wavelength limits of spectral

absorption of the PV module. λ3 and λ4 are the wavelength limits

of the spectrum [3]. 𝐸𝑟𝑒𝑓  and 𝑆𝑅 are the reference spectral

irradiance at standard testing conditions (STC) and the spectral 

response of the PV module, respectively. 𝐸𝑚𝑒𝑎𝑠 is the measured

solar spectral irradiance [5]. MM accounts for the spectrum’s 

influence on PV performance. The interpretation of MM is that 

the PV module undergoes a spectral loss when MM is less than 

unity and undergoes a spectral gain if MM is greater than unity 

[3].  

On-site spectral data is scarce and expensive due to the cost and 

care needed for spectroradiometers [6]. However, the AErosol 

RObotic NETwork (AERONet) has multiple stations worldwide, 

providing global observations of AOD500 and O3 [7]. The

Southern African Universities Radiometric Network 

(SAURAN) provides solar radiometric data from locations 

across Southern Africa [8]. The combination of these two 

separate databases can be used to address the spectral data 

scarcity in Southern Africa. Using overlapping data periods can 
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be extremely useful to estimate spectral variables with 

reasonable accuracy.  

To the authors’ knowledge, a study has yet to be done to assess 

the sensitivity of the spectral mismatch regarding AOD500

and O3. Further, based on the sensitivity of these variables, is

there a simple and inexpensive computational manner to 

estimate AOD500 and O3 for spectral mismatch evaluations? Is it

necessary to have accurate and expensive spectral measurements 

if there is a more straightforward solution? This study aims to 

quantify how much of an impact AOD500 and O3 will have on

MM and propose what modelling assumptions can be made for 

South African locations when these measurements are 

unavailable.  

2. Spectral Irradiance

2.1. Irradiance Components 

Tilted irradiance or global plane-of-array irradiance, which is the 

total spectral irradiance, is defined as:  

𝐺𝑠𝜆 = 𝐺𝑏𝑠𝜆 + 𝐺𝑑𝑠𝜆 + 𝐺𝑟𝑠𝜆. (3) 

𝐺𝑏𝑠λ is the beam or direct tilted irradiance, 𝐺𝑑𝑠λ is the sky diffuse

tilted irradiance, and 𝐺𝑟𝑠λ is the ground-reflected diffuse tilted

irradiance [9]. 𝐺𝑏𝑠λ is determined using Direct Normal

Irradiance (DNI), 𝐺𝑑𝑠λ using Diffuse Horizontal Irradiance

(DHI) and 𝐺𝑟𝑠λ using Global Horizontal Irradiance (GHI).

2.1.1. Direct Normal Irradiance 

Direct irradiance on a surface normal to the direction of the Sun 

at ground level for wavelength λ (𝐺𝑑λ) is given as [2]:

𝐺𝑑λ = 𝐻𝑜λ𝐷𝑇𝑟λ𝑇𝑎λ𝑇𝑤λ𝑇𝑜λ𝑇𝑢λ (4) 

where 𝐻𝑜λ is the extraterrestrial irradiance at the mean earth-sun

distance for wavelength λ, 𝐷 is the correction factor for earth-

sun distance, 𝑇  is the transmittance functions of the atmosphere 

at wavelength λ, 𝑇𝑟λ is the  Rayleigh transmittance, 𝑇𝑎λ is the

aerosol attenuation transmittance, 𝑇𝑤λ is the water vapour

absorption transmittance, 𝑇𝑜λ is the ozone absorption

transmittance and 𝑇𝑢λ is the uniformly mixed gas absorption

transmittance. The interested reader is referred to [2] for more 

detail.   

Ozone absorption is described by:  

𝑇𝑜λ = exp(−𝑎𝑜λ𝑂3𝑀𝑂) (5) 

𝑀𝑂 = (1 + ℎ𝑂/6370)/(cos2 𝑍 + 2ℎ𝑂/6370)0.5 (6) 

where 𝑎𝑜λ is the ozone absorption coefficient, O3 is the ozone

amount (atm-cm), 𝑀𝑂 is the ozone mass, and ℎ𝑂 is the height of

the maximum ozone concentration, approximately 22 km.  

Ozone can be estimated using: 

𝑂3 = 235 + (100 + 30 sin[0.9865(𝑛 + 152.625)]

+ 20 sin(2(𝐿 − 75))) ⋅ (sin2(1.5𝜙𝐿))
(7) 

where 𝑂3 is measured in matm-cm, n is the day of the year (1

Jan = 1), L is the longitude and 𝜙𝐿is the longitude [10].

Equation (12) has not been validated for the Southern 

Hemisphere [10].  

2.1.2. Diffuse Horizontal Irradiance 

Diffuse irradiance on a horizontal surface or the total scattered 

irradiance 𝐺𝑠λ is given as [2]:

𝐺𝑠λ = 𝐺𝑟λ + 𝐺𝑎λ + 𝐺𝑔λ (8) 

where 𝐺𝑟λ and 𝐺𝑎λ refer to the Rayleigh and aerosol scattering

components, respectively, and 𝐺𝑔λ is the multiple reflection of

irradiance between ground and air. These equations are 

explained in detail in [2].  

2.1.3. Global Horizontal Irradiance 

GHI, 𝐺𝑇λ, is given as a combination of 𝐺𝑠λ and 𝐺𝑑λ:

𝐺𝑇λ = 𝐺𝑑λ cos 𝑍 + 𝐺𝑠λ (9) 

AM, AOD500 and O3 impact the 𝐺𝑑λ and as contribute more than

the 𝐺𝑠λ to GHI.

2.2. Influences on Spectral Irradiance 

This section illustrates AM, AOD500 and O3’s effects on the

spectral irradiance. STC for atmospheric conditions is defined as 

a spectrum at an Air Mass of 1.5 (AM1.5), water vapour of 

1.42cm, O3 of 0.344 atm-cm and AOD500 at 500nm of 0.27 [11].

The spectral irradiance is simulated in Figure 1 to Figure 3 using 

Bird’s model [2].  

Solar irradiance at different AM is shown in Figure 1 with STC 

atmospheric conditions for water vapour, O3 and AOD500 and the

STC conditions of 37∘ tilt angle, 180∘ azimuth angle, 37∘

latitude and −100∘ longitude. Figure 1 clearly shows the impact

of AM on the spectral solar irradiance.  

Figure 1. Solar spectral irradiance at varying AM indicates 

a significant effect on the irradiance 
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Figure 2  visualises the effect that the change in AOD500 has on

the spectral irradiance. The STC conditions are kept constant; 

however, AOD500 varies. Figure 2 indicates how AOD500 has a

moderate effect on the irradiance. The spectral irradiance was 

slightly decreased across the wavelengths as the AOD500

increased.  

Figure 3 visualises the effect of the change in O3 on spectral

irradiance. The simulation indicated no noticeable changes after 

1 µm, which is not shown in Figure 2 and Figure 3. Similarly, to 

Figure 2, the STC conditions are kept constant; however, in this 

scenario, O3 varies. Changes in the spectral irradiance were

noted in the 0.3-0.35 and 0.5-0.65 µm wavelengths, which had a 

much less pronounced overall effect than AOD500. These results

align with O3 being more effective at absorbing at lower

wavelengths where irradiance is also lower, being the Hartley 

absorption band at 0.195 to 0.35 µm and the Chappuis band 

between 0.42 to 0.83 µm [12].  

As discussed previously, significant changes in the spectral 

irradiance were noted for changes in AM, moderate sensitivity 

for AOD500 and very little sensitivity in O3. The conclusion is

that AOD500 has a more significant impact than O3, where the

spectral irradiance is concerned. As the spectral mismatch is 

dependent on spectral irradiance, the hypothesis is that MM will 

be more sensitive to AOD500 than O3.

Figure 2. Solar spectral irradiance at varying 𝐀𝐎𝐃𝟓𝟎𝟎

indicates a moderate effect on the irradiance  

Figure 3. Solar spectral irradiance at varying 𝐎𝟑 indicates a

mild effect on the irradiance 

3. Sensitivity Analysis

3.1. Data 

Three locations within South Africa were identified with 

proximity between the SAURAN and AERONet stations and 

overlapping data periods, and are indicated in Figure 4 and Table 

1. The AERONet database's Durban, Simon’s Town and Pretoria

stations were selected to be paired with the SAURAN University

of KwaZulu-Natal Howard College (KZH), Stellenbosch

University (SUN) and UPR (University of Pretoria) stations

respectively. The coordinates for the Durban, Stellenbosch and

Pretoria sites are (-29.871, 30.977), (-33.935, 18.867) and

(-25.753, 28.229), respectively. Further, the three sites have

varying elevations of 150 m, 122 m and 1,410 m for Durban,

Stellenbosch and Pretoria, respectively. The tilt angle is assumed

to be 30∘ for all three sites and north-facing (0∘ azimuth angle).

Table 1 indicates the corresponding stations and the overlapping 

period identified for this study. The GHI and pressure 

measurements from the SAURAN database are used for this 

study. Level 2.0 quality assured data from AERONet is used in 

this study.  

The SAURAN database has minutely-resolution data available, 

however, the AERONet database only has one-minute data 

available as it observes at approximately 15 minutes [13]. Figure 

5 shows a visual explanation where the SAURAN and AERONet 

datasets combination indicates no AOD500 and O3 datapoints for

some of the corresponding SAURAN timestamps. The available 

datapoint is then set as the corresponding AOD500 and O3 for the

pre- and proceeding two minutely timestamps of the available 

AERONet data point. Therefore, the two datasets were combined 

by a forward- and backwards-filling procedure with a 2-minute 

limit to ensure more data points are available for this study.  

The mean O3 for the Durban, Stellenbosch and Pretoria sites are

0.275 atm-cm, 0.271 atm-cm and 0.287 atm-cm, respectively. 

The mean AOD500 for the three sites are 0.164, 0.161 and 0.077

for Durban, Stellenbosch and Pretoria, respectively. Figure 6 and 

Figure 7 show the statistical distributions of the three AERONet 

sites, for both AOD500 and O3, respectively.

Figure 4. AERONet and SAURAN sites with overlapping 

data periods [7, 8]   
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Table 1. Database summary 

Dataset name 
SAURAN 

station 

AERONet 

station 
Overlapping period 

Data Points 

available 

Durban KZH Durban 24-01-2016 to 07-03-2019 30,776 

Stellenbosch SUN Simon’s Town 02-06-2020 to 03-01-2022 31,998 

Pretoria UPR Pretoria 02-01-2019 to 29-12-2020 36,863 

Figure 5: Forward and backwards filling principle 

Figure 6: AOD500 statistical distribution 

Figure 7: Ozone statistical distribution 

The sites closer to the coast and lower altitudes have a higher 

mean AOD500 than the higher altitude, inland Pretoria site,

whereas the O3 shows the opposite. The statistical distribution

does indicate that there is flunctations in the data, contributed to 

the variability inherent to changing of seasons.  

Figure 8  shows the MAE and RMSE, expressed as a percentage 

of the mean O3 for comparing the estimated O3 using

Equation (12). The results indicate that the Pretoria site has a 

higher percentage error than the lower altitude sites 

(Stellenbosch and Durban). However, as seen in Figure 2 and 

Figure 3, the changes in the spectral irradiance when these values 

differ has a minimal effect, which will carry over to a minimal 

effect on the spectral mismatch calculations. Overall, the 

estimation of O3 yields a 3.8% MAE and 4.9% RMSE, which

should be noted when using an alternative when no O3

measurements are available.  

The SAURAN datasets were processed using the quality control 

procedure proposed in [14]. Further, only daytime values, i.e., 

after sunrise and before sunset, were used for this study. The data 

processing results in 99,637 total datapoints with a temporal 

resolution of 1 minute available. The dataset consists of 30.9% 

data from the Durban station, 32.1% from the Stellenbosch 

station and 37% from the Pretoria station, described in Table 1.  

3.2. Spectral Response of Polycrystalline Module 

Figure 9 shows the simulated spectral response (SR) of a 

polycrystalline PV module, which will apply to all three location 

scenarios to determine spectral mismatch. 

3.3. Comparison Metrics 

The comparison metrics used in this study are the mean absolute 

error (MAE), root mean square error (RMSE) and coefficient of 

determination 𝑅2. The error is calculated as the difference

between the predicted and simulated MM.  

3.4. Sensitivity Analysis 

An initial sensitivity analysis was done using three different 

combinations of data to determine MM: 

1. Measured AOD500 with the estimated O3 using

Equation (12)

2. Measured O3 with a constant AOD500 value of 0.123;

3. And a constant AOD500 value (0.123) with the estimated O3.

AOD500 of 0.123 is the mean of the total combined datasets,

including Upington as an additional AERONet dataset; thus, the 

mean value of measurements from Stellenbosch, Durban, 

Pretoria and Upington. Due to no overlapping period for the 

corresponding Upington SAURAN and AERONet databases, the 

Upington station is not included in the spectral mismatch 

sensitivity analysis.  
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Figure 8. MAE and RMSE of using estimated ozone 

Figure 9. Simulated spectral response of a polycrystalline 

PV module 

Figure 10 shows the distribution of the spectral MM for the three 

stations with the constant AOD500 with estimated O3 compared

to the measured values to estimate MM. The results show that 

the Durban site’s mean MM is very close to unity, whereas 

Pretoria and Stellenbosch are slightly less than unity, i.e. slight 

spectral loss. The normal distribution changes slightly between 

the measured MM and the estimated MM. The estimated MM’s 

peak is more clustered around the mean than the measured MM. 

The measured O3 with a constant AOD500 showed almost no

difference in the distribution and was not included in Figure 10. 

However, the distribution shows that the estimated MM will 

deviate more from the mean when the MM has a spectral gain or 

loss and is not unity.  

Figure 11 shows the subsequent results, which indicate the 

sensitivity of spectral MM towards O3 and AOD500 for the three

sites and the total dataset. When the measured AOD500 was used

to determine MM with the estimated O3 value, there was very

little error for all three locations.  

Figure 10. Spectral MM frequency distribution of three 

stations 

Figure 11. Spectral MM RMSE using a combination of 

constant and measured values. 

However, the spectral MM showed noticeably higher errors for 

all three sites in the scenarios where AOD500 was a constant

value instead of the measured value.  The conclusion is made that 

the spectral MM is more affected by AOD500 than O3, and an

estimated O3 value is acceptable if no measured O3 is available.

Therefore, the second part of this paper is to determine a 

methodology in which AOD500 can be predicted with reasonable

accuracy that will improve this error. 

4. Aerosol Optical Depth Estimations

4.1. Irradiance and Solar Components 

The relative AM is expressed by [15]  

AM = [cos θ𝑍 + 0.5057(96.080 − θ𝑍)−1.634]−1 (10)

where θ𝑍  is the solar zenith angle.

The clearness index 𝐾𝑡 was defined in [16] as

𝐾𝑡 =
𝐺𝐻𝐼

𝐼0𝑛 cos θ𝑍

=
𝐺𝑇λ

𝐼0𝑛 cos θ𝑍
(11) 

The extraterrestrial irradiance on a normal surface 𝐼0𝑛 is based

on the day of the year and is described as:  

𝐼𝑂𝑛 = 𝑆𝐶 (1 + 0.033 ⋅ cos (
360 ⋅ 𝑛

365
)) (12) 

where 𝑆𝐶 denotes the solar constant (usually 1367 W/m2).

4.2. Aerosol Optical Depth 

4.2.1.  Baseline Model 

The baseline model is selected as AOD500 value (0.123) with an

estimated O3 value using Equation (12).

4.2.2.  Lookup Tables for Aerosol Optical Depths 

Three lookup tables were selected to determine AOD500: an AM-

only, 𝐾𝑡-only and a two-dimensional (2D) lookup table which

consists of AM and 𝐾𝑡-intervals. The values are generated by

taking the mean value of the training set with the corresponding 

interval of AM and 𝐾𝑡. The data is split into 60:40 training and

testing sets for each dataset, and then a larger training and testing 
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datasets are combined with the three sites. Table 2 describes the 

AM-lookup table, Table 3 the 𝐾𝑡 lookup table and Table 4 the

2D lookup table. AM refers to relative AM.  

Table 2. AM lookup table 

AM 𝐀𝐎𝐃𝟓𝟎𝟎

[0, 1.5) 0.127 

[1.5, 3) 0.138 

[3,6) 0.128 

[6, ∞) 0.119 

Table 3. 𝑲𝒕 lookup table

𝑲𝒕 𝐀𝐎𝐃𝟓𝟎𝟎

[0, 0.2) 0.098  

[0.2, 0.5) 0.127 

[0.5, 0.7) 0.143 

[0.7, ∞) 0.118 

Table 4. 2D lookup table 

𝑲𝒕

[0, 0.2) [0.2, 0.5) [0.5, 0.7) [0.7, ∞) 

AM 

[1, 1.5) 0.072 0.111 0.15 0.118 

[1.5, 3) 0.096 0.137 0.145 0.118 

[3,6) 0.126 0.147 0.125 0.104 

[6, ∞) 0.105 0.125 0.107 0.127 

4.3. Spectral Irradiance Simulation 

Simulation is done in Python using the pvlib spectrum library 

[17]. The O3 values were calculated using Equation (12). Input

variables such as the angle of incidence, θ𝑍 and AM can be

empirically determined. The ground albedo was selected as 0.2. 

The location variables were set as described in Section 3.1. The 

spectral irradiance was simulated accordingly, and the spectral 

mismatch was calculated using the spectral response. 

5. Results

Figure 12 shows the frequency distribution of the measured MM 

and is compared with the baseline model and three lookup tables. 

The mean of all the models stays the same; however, the 

frequency distribution has a higher peak than the measured MM. 

Figure 13, Figure 14 and Figure 15 show, respectively, the 

RMSE, MAE and 𝑅2 results of the three sites, as well as the total

dataset, of the errors between the actual and predicted MM with 

differently estimated AOD500. In Figure 13 and Figure 14, the

baseline model is not significantly outperformed by the other 

lookup tables. The 𝐾𝑡-only lookup table shows the worst

performance. 

Figure 12. Spectral MM frequency distribution of the total 

dataset 

Figure 15 shows the 𝑅2 results of the total dataset, i.e., all three

sites, for different intervals of AM and 𝐾𝑡. The three sites show

that the Pretoria site has the lowest errors, whereas the 

Stellenbosch site shows the highest. The RMSE for all the 

stations is small, all under 1% RMSE error rate. The MAE is also 

very low, ranging between 0.26% for Stellenbosch and 0.17% 

for Pretoria.  

The MAE and RMSE using a constant AOD500 with the

estimated O3 were 0.21% MAE and 0.75% RMSE for the total

dataset. The small margin of error using these estimated values 

indicates that the proposed method in this paper is an appropriate 

substitution when no spectral data is available. The overall 

dataset (including all three sites) shows no significant 

outperformance from the baseline model using the three lookup 

tables. Further, Figure 16 shows the overall test dataset baseline 

model MM with the percentage error from the measured MM.  

Figure 13. RMSE results 

Figure 14. MAE results 
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Figure 15. 𝑹𝟐 results

Figure 16. Percentage error of measured vs. estimated MM 

with constant 𝐀𝐎𝐃𝟓𝟎𝟎

From AM4 and higher, the percentage error is more prominent. 

However, most of the test dataset (97.9%) falls within a 2% error 

from the MM compared to the estimated MM. Figure 16 also 

indicates that the baseline MM slightly underestimates the MM 

more than it overestimates.  

6. Conclusion

A sensitivity analysis of aerosol optical depth at 500nm and 

ozone for spectral mismatch of three South African locations was 

performed. This paper addresses a data scarcity issue: Are 

precise spectral measurements for AOD500 and O3 necessary,

specifically for spectral mismatch estimations, when a simpler 

alternative is available? Three South African sites with 

corresponding AERONet and SAURAN locations were 

combined to assess the spectral mismatch sensitivity. The results 

indicated that AOD500 has a more pronounced effect on spectral

irradiance than O3, which subsequently proved to have a more

pronounced effect on spectral mismatch. The results indicated 

that an estimated ozone value with measured AOD500 generates

a negligible error for spectral mismatch calculations. Therefore, 

the paper's objective was to determine a methodology to predict 

AOD500 using a lookup table. Three lookup tables were proposed

with AM, 𝐾𝑡 and a 2D-lookup table, which combined AM and

𝐾𝑡 intervals. The results indicate that spectral mismatch can be

simulated using an estimated O3 with a constant AOD500 with a

relatively minimal effect on spectral mismatch simulations. A 

constant AOD500 of 0.123 for South Africa is suggested to

determine spectral irradiance and spectral mismatch with 

reasonable accuracy when no spectral data is available.  
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Abstract: Ongoing efforts in the development of thermal 
energy storage (TES) systems coupled with concentrating solar 
power systems show potential for matching increasing energy 
demand. A solar dish and tubular receiver coupled to a short-
term TES unit are currently being investigated at the University 
of Pretoria (UP) over a full range of mass flow rates and using 
concentrated solar energy as the source of heat input. This 
paper reports the findings from initial experimental results 
evaluated in lower-range mass flow rates using a blower with 
air as the heat transfer fluid (HTF). During the experimental 
evaluation, 151 kg of solar salts was charged and discharged in 
a TES unit. The full cycle of charging the system was achieved 
over three sunny days (which included two unavoidable 
overnight heat loss processes) whereafter one overnight 
discharging process was performed. A maximum average 
temperature of 222.6 ℃ was achieved in the TES unit. During 
the charging process, an average uncontrolled air mass flow 
rate of 0.0132 kg/s was supplied. Results show that 17.51 kWh 
of energy was stored during the 13-hour intermittent charging 
process and 9.81 kWh was recovered from the TES during the 
17-hour discharge process. Lastly, the system displayed
substantial parasitical energy losses – recommendations are
suggested for the next round of mid-range and higher-range
mass flow rate testing.

Keywords: Concentrating solar power (CSP); solar salts; solar 
dish; thermal energy storage. 

1. Introduction

The need to explore alternative energy sources is important as 
the mismatch in energy supply and demand continues while the 
global population increases. Furthermore, one could argue that 
the unfriendly environmental impact associated with fossil fuels 
and the high associated cost of consumption of fossil fuels 
propagates global socio-economic imbalances [1, 2]. Whilst 
some of these problems can be resolved, the depletion of fossil 
fuels has been forecasted [3]. 

In the search for an alternative energy source, sustainable and 
renewable sources (such as biomass, solar, hydropower and 
wind) tick many boxes as attractive solutions. This paper 
focuses on solar energy as it is fundamentally Earth’s energy 
source [4] and the energy available from the sun in one hour is 
typically enough to meet all annual energy demands globally 
[5, 6]. 

1.1. Opportunity 
The global energy crisis affects Africa in multiple ways owing 
also to the injustices of the past on Africa. Currently, it is 
estimated that 940 million people do not have access to 
electricity globally, and a large percentage of these people live 
in Africa [7]. Sub-Saharan Africa (SSA) [8] amounts to more 
than two-thirds of the world’s population with no access to 
electricity. Many factors contribute to why Africa is left behind 
in closing this gap. One such reason is that the national grid 
infrastructure is not sufficient to electrify the population using 
centralised power distribution methods [9]. As a result, while 
the rest of the world is transitioning to renewable and 
sustainable energy, access remains a challenge to SSA. Solar 
energy is an attractive source of renewable energy as it can also 
address the distribution of energy to isolated communities via 
the use of microgrids [10]. 

1.2. Concentrating Solar Power 
Concentrating solar power (CSP) for power and heat generation 
has shown great potential in providing solutions to the multi-
faced energy crisis [10]. Several methods have been developed 
to actively capture and convert energy derived from the sun. A 
major shortcomings in deploying solar power has been 
intermittency [11]. To mitigate the associated risks, many 
studies have shown that the integration of TES in CSP plants 
can increase their power availability. Furthermore, the inclusion 
of TES would render CSP a more dispatchable source of 
energy, as this would improve the reliability and availability of 
power plants. 
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1.3. Thermal Energy Storage 
In the search for a suitable TES method, numerous studies have 
suggested that eutectic solar salts are the best candidate for 
these applications, due to their superior properties [12]. 
Furthermore, eutectic salts are attractive as a phase change 
material (PCM) for heat storage because they display stable 
characteristics [13]. When solar salts are used as PCM material 
for TES, the solid-to-liquid phase change is achievable at high 
temperatures and liquid phases are maintained over a wider 
range of temperatures [14-16]. Material handling is also 
simplified because of small changes in volume at phase change 
[17]. In addition, PCM storage offers an added advantage in 
being deployed for both sensible heat (SH) (in the solid and 
liquid phases) and latent heat (LH) [18]. Considering the 
available literature on the various benefits of different mixture 
ratios of solar salts for different storage applications, the focus 
of this paper is on 40𝑤𝑡% 𝐾𝑁𝑂3 − 60𝑤𝑡% 𝑁𝑎𝑁𝑂3 [19]. The 
TES was previously evaluated under a controlled charging 
process with input heat generated by flue gases from the 
combustion process as described by Humbert et al. [19]. 

2. Methodology

This paper presents the initial experimental evaluation of an 
existing solar dish, as designed and developed at the University 
of Pretoria (UP) [20, 21], coupled to an existing TES unit 
which was designed for heat recovery from the exhaust of a 
micro-turbine (see Humbert et al. [18]). For the present work, 
the temperature response of the TES from solar energy input is 
evaluated. The setup uses ambient air as the heat transfer fluid 
(HTF). 

2.1. Heat input 
The heat input to the system is provided by the solar dish, with 
the central receiver located at the focal point of the parabolic 
dish to maximise the heat transferred to the HTF [22, 23]. The 
available solar power is calculated using Equation 1 below 
[24]: 

�̇�𝑠 = 𝐴𝑑 × 𝐷𝑁𝐼 × 𝜂𝑠 (1) 

where �̇�𝑠 is the solar power input at the receiver, 𝐷𝑁𝐼 (W/m2) 
is the direct normal irradiance of the sun, 𝐴𝑑 is the total 
reflective area of the dish and 𝜂𝑠 is the reflectivity of the 
reflector material. 

2.2. Heat losses 
There are several heat loss mechanisms associated with the 
solar dish system. These are found at the dish, receiver, process 
piping, and TES. The mechanisms include conduction, 
convection, and radiation [23]. In this paper, these losses were 
not monitored, however, they were calculated from the 

measured energy gains associated with the system components. 

2.3. The process heat input to the system 
The rate of heat gained or lost by the HTF as it undergoes the 
process is calculated using Equation 2 [25]: 

𝑄�̇� = �̇�𝑎𝑖𝑟𝐶𝑝,𝑎𝑖𝑟(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) (2) 

where 𝑄�̇� is the power gained or lost, �̇�𝑎𝑖𝑟  is the mass flow rate 
of the process air in kg/s, and 𝐶𝑝,𝑎𝑖𝑟  is the specific heat capacity 
of air. The properties of the HTF are evaluated at the bulk mean 
temperature. 𝑇𝑜𝑢𝑡  and 𝑇𝑖𝑛 are the exit and inlet air temperature 
values respectively across the specific component of interest. 

2.4.  Thermal energy storage analysis 
Fully understanding the TES’s response to the current system 
will enable controlled variation of parameters and prediction of 
the TES’s performance. From the literature, the use of eutectic 
solar salts, 40𝑤𝑡% 𝐾𝑁𝑂3 − 60𝑤𝑡% 𝑁𝑎𝑁𝑂3, has advantages: 
large-temperature-range stability, high Cp value, as well as 
sensible and latent heat storage [17]. The melting point of this 
mixture, as reported by Humbert et al., is around 222 ℃, and 
the solar salts remain stable in the liquid phase to temperatures 
of up to 600 ℃. Furthermore, eutectic solar salts can be used as 
both a storage medium and HTF [10]. 

To evaluate the response of the TES, the energy balance for the 
HTF process line and the solar salts bath was evaluated. 

2.4.1. Energy balance: TES-process side 

Across the TES inlet and outlet, energy is transferred from the 
HTF (Equation 3) to the solar salts and to the environment as 
heat loss through the insulation of the TES. 

�̇�𝑇𝐸𝑆,𝑎𝑖𝑟 = �̇�𝑎𝑖𝑟𝐶𝑝,𝑎𝑖𝑟�𝑇𝑇𝐸𝑆,𝑖𝑛 − 𝑇𝑇𝐸𝑆,𝑜𝑢𝑡� (3) 

In Equation 3, a time stamp of 1 minute was used as inherited 
from the SAURAN station at UP [26], whose DNI data was 
used to analyse the results. The other measurements were taken 
at a sampling rate of 3 seconds and averaged over 20 data 
points to result in minute samples for analysis. 

2.4.2. Energy balance: TES-storage material side 

In using solar salts as energy storage material, SH (solid: sol), 
LH, and SH (liquid: liq) can be stored (see Equations 4, 5, 6, 
and 7 below). 

𝑄𝑠𝑒𝑛,𝑠𝑜𝑙 = 𝑚 × 𝐶𝑝,𝑠𝑎𝑙𝑡(∆𝑇𝑠𝑜𝑙) (4) 

𝑄𝑙𝑎𝑡𝑒𝑛𝑡 = 𝑚 × 𝜆𝑠𝑜𝑙−𝑙𝑖𝑞  (5) 

𝑄𝑠𝑒𝑛,𝑙𝑖𝑞 = 𝑚 × 𝐶𝑝,𝑠𝑎𝑙𝑡(∆𝑇𝑙𝑖𝑞) (6) 

𝑄𝑡𝑜𝑡,𝑠𝑡𝑜𝑟𝑒𝑑 = 𝑄𝑠𝑒𝑛,𝑠𝑜𝑙 + 𝑄𝑙𝑎𝑡𝑒𝑛𝑡+𝑄𝑠𝑒𝑛,𝑙𝑖𝑞  (7) 
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Note that ∆𝑇 represented the change in temperature of the solid 
and the liquid during charging or discharging. The LH value 
𝜆𝑠𝑜𝑙−𝑙𝑖𝑞  was taken from Ref. [27] as 96 kJ/kg. 

2.4.3.  Heat losses around the TES during charging. 

The TES experiences heat losses during both the charging and 
discharging periods. The total heat loss rate in the TES is 
calculated using the difference between the total amount of heat 
delivered to the TES by the air and the energy stored in the 
TES. 

�̇�𝑇𝐸𝑆,𝑙𝑜𝑠𝑠𝑒𝑠 = �̇�𝑇𝐸𝑆,𝑎𝑖𝑟 − �̇�𝑡𝑜𝑡,𝑠𝑡𝑜𝑟𝑒𝑑 (8) 

Equation 8 is applicable for charging and discharging, as there 
are energy losses associated with both processes. 

3. Experimental setup

The solar dish for this experiment contained uncontrolled HTF 
flow. The HTF was supplied by a domestic application 3.3 kW 
Trimtech leaf blower with only one power setting. The flow 
rate through the system varied continuously throughout the 
charging and discharging cycle. The variations were due to 
changing air properties (affecting the friction factors) at the 
blower, in the solar receiver and in the TES due to changing 
wind conditions, humidity, ambient temperature and DNI. A 
low-range air mass flow rate (0.01 kg/s to 0.02 kg/s) was 
evaluated in the current work. These initial results can be used 
to systematically characterise the experimental performance of 
the solar dish system, even though the theoretical desired 
receiver performance is described by Le Roux et al. to be 
around the optimum mass flow rate of 0.07 kg/s [23]. The 
schematic diagram of the dish setup is shown in Fig. 1. 

Fig. 1. Solar dish and TES layout 

The results presented in this paper, came from measurements 
taken from three consecutive days of testing in the lower mass 
flow rate range. The charging process started on the morning of 
the 18th of April 2023 and ended on the 20th of April 2023, and 
the discharging process started on the evening of the 20th of 
April 2023 and ended on the morning of the 21st of April 2023. 

3.1. Charging process 
During the charging cycle, the system starts from a cold state, 
in which it heats the process piping, receiver, and the TES. The 
system’s average temperature increases and the mass flow rate 
decreases as the resistance increases due to an increase in 
friction. During discharge, the opposite is the case. For the 
discharging process, the process started immediately after the 
end of charging on Day 3 and therefore started hot. 

The same process path line for charging and discharging 
according to path 2 is used. Path 1 and 3 was not used for this 
setup. See Fig. 2 below showing path 2: Fan > flowmeter (fm) 
> Receiver (ab) > Down piping (bc) > TES (cd) > Outlet.

Fig. 2. The charging and discharging path 2 

The actual system setup is shown in Fig. 3 below. 

Fig. 3. Solar dish setup 

The solar dish system's design consists of a reflective area of 
23.95 m2 and assumed reflectivity of 0.85, with a receiver 
aperture area of 0.25 × 0.25 m, as detailed by Roosendaal et al. 
[20, 21]. The TES was constructed as a coil immersed in solar 
salts (see Ref. [19]). The coil consists of 6 loops, adjacent to 
each other, with the first loop situated at the hot air inlet side 
and the last loop at the outlet of the TES. The experiments were 
performed in an uncontrolled environment to observe a true 
response. The mass flow rate was measured using a SUTO 
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S421 mass flow meter. The TES was fitted with thermocouples 
for temperature response readings. Some of the thermocouples 
were welded to the surface of the coils (ST1-ST6), and some 
were immersed in the solar salts between the coils (PT1-PT5) 
(see Fig. 4 below). 

Fig. 4. Thermocouple positions and IDs 

The positions of the thermocouples are described by Humbert 
et al. [19]. The thermocouples were connected to an Agilent 
Keysight 34901A module connected to a suitable Agilent data 
logger. The measurements were manually observed on a 
computer to track the real-time response of the setup.  

The TES mass is divided into 5 sub-mass components to 
accommodate the 5 immersed temperature probes (PTs). Due to 
the complex bath shape on the inlet and outlet sides, the mass 
of the solar salts surrounding the first and last coils are assumed 
to be 33.5 kg each, whilst the middle coils are assumed 28 kg 
each (see Fig. 4). The average temperature of the two adjacent 
coils’ surface temperature (ST) and probe temperature reading 
were used in analysing the heat transfer from the HTF to the 
PCM locally in each coil section. This approach was opted to 
accommodate the immersed probes’ thermocouples in the PCM 
as there were only five. 

4. Results

The system was tested for three consecutive days by charging 
and by discharging across Day 3 into Day 4. The experimental 
mass flow rate is shown below in Fig. 5. The average mass 
flow rate of 0.032 kg/s is calculated for charging whilst the 
average mass flow rate of 0.0175 kg/s is calculated for 
discharging. 

Fig. 5. System’s mass flow rate 

4.1. Combined TES response (charging) 
Over the three consecutive days, the TES experienced 
overnight heat losses during the first two nights (see Fig. 6). At 
the start of the second day, the system started with an undesired 
process discharge as the TES and the piping system were 
warming up. On the third day, to enhance the charging process, 
the TES was bypassed until the inlet temperature to the TES 
was reading the same as the TES's surface thermocouple 1. The 
average salt bath temperature drop overnight for both days 1 
and 2 is calculated below in Table 1. 

Table 1. Charging conditions (averaged values) to calculate 
temperature drop during the first (*) and second (**) night. 

Temperature (℃) 
Start 
Type Start  End 

Temp. 
Drop 

Day 1 Cold 
Probes 16.22 *164.19
Surface 16.23 168.33 

Day 2 Hot 
Probes *119.09 **200.05 *44.29

Surface 116.85 205.82 

Day 3 Hot 
Probes **158.58 219.75 **41.24 

Surface 158.58 223.58 

These temperatures drop values amount to an average heat loss 
rate of 0.172 kW. To evaluate the overall TES response, a 
conservative approach was used to select the data and combine 
it for overall analysis. The data points selected for analysis 
were based on the average temperature of the TES, such that 
different sections of overlapping temperatures were taken to 
allow continuity of temperature in the TES over the 3 days of 
charging. In Fig. 6 below, for Day 1’s measurements, the 
selected data ranges from ambient temperature to 150 ℃, for 
Day 2 the selected data ranges from 150 ℃ to 200 ℃, and for 
Day 3 the data ranges from 200 ℃ to the maximum 
temperature. Using the average temperature of the five probes 
(PT1-PT5) in the TES, the corresponding data indexing for a 
specific day was identified.  
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Fig. 6. Three days charging temperature results for selected thermocouples and averaged data for analysis. 

4.1.1. HTF (charging) 

To evaluate the charging process on the HTF side, Equations 1, 
2, and 3 above were employed. The results for the performance 
in the receiver and the TES are shown below in Fig. 7. 

Fig. 7. Three days charging processes (HTF results). Note 
that the time step is 1 minute. 

4.1.2. PCM (charging) 

The design of the TES and the nature of the HTF resulted in the 
stratification of temperatures along the coils of the TES. The 
salts surrounding coils 1 and 2 reached the liquid phase on days 
2 and 3 of testing. As a result, the energy analyses for these two 
coils consisted of sensible solid, sensible liquid, and latent 
energy analyses. Equations 4, 5, 6, and 7 were used to calculate 
the stored energy during the charging cycles. Table 2 below 
summarises the response of the TES during charging. 

Table 2. Overall TES performance (charging) 

Charging [kWh] 
𝑬𝑯𝑻𝑭 Convective TES 17.51 
𝑬𝑷𝑪𝑴 Sensible Solid TES 12.76 

Latent TES 1.64 
Sensible Liquid TES 0.38 
Total 14.78 

The difference (2.73 kWh) in the energy provided by the HTF 
and the energy gained by the PCM is assumed to be due to heat 
transfer to the environment during the charging process. This 
value corresponds to the average heat loss rate calculated from 
Table 1 (0.172 × 779/60 ≈ 2.23 kWh). 

4.2. TES Response (discharging) 
The evaluation of TES discharge cycles was evaluated both on 
the HTF side and on the PCM side. This approach offers a 
comparison method to evaluate the energy balance around the 
TES based on the results from both analyses. 

4.2.1. HTF (discharging) 

The system discharge cycle started hot, and the discharge 
process is along path 2 (same as charging). As a result, the 
energy restored from the system includes that which is also 
stored in the hot receiver and process piping at the end of Day 
3's charging period. 

The temperature response of the TES on the air side is shown 
below in Fig. 8. 
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Fig. 8. The discharge temperature response for the solar 
receiver and the TES 

The energy balance performed in this regard considers the 
energy restored from process piping. Using the applicable 
thermocouples, the heat recovered by the HTF was specifically 
calculated considering the source it was restored from. Fig. 9 
below shows the HTF energy profile during discharge. 

Fig. 9. Energy recovered from the TES, solar receiver, and 
piping during discharge. Note that the time step is 1 minute. 

4.2.2. PCM (Discharging) 

It was found that the thermocouples (PT1-PT5) did not 
successfully read the data during the first 10 minutes of the 
discharge process. During this time, the blower continued 
pushing air through the TES (discharging it). As a result, the 
PCM temperatures were only recorded in the sensible solid 
region even though coils 1 and 2 were charged to the sensible 
liquid region. The results are presented in Table 3 below.  

Table 3. Overall TES performance during discharge 

Discharge [kWh] 
𝑬𝑷𝑪𝑴 Sensible Solid TES 11.62 
𝑬𝑯𝑻𝑭 Convective TES 9.81 

Heat recovered: hot receiver and piping 2.22 
Total 12.04 

It must be noted that the receiver and piping energy restored by 

the HTF during discharge (2.22 kWh) is not accounted for in 
the PCM energy in this process. It is assumed that the 
difference (of 1.81 kWh) in the energy recovered from the 
PCM (11.62 kWh) and the energy captured by the HTF 
(9.81 kWh) during this process resulted from heat losses to the 
environment, and, the 10 minutes of the lost data at the start of 
the discharging process. 

5. Discussion and conclusions

The experimental work presented in this paper investigated the 
response of the short-term TES in the low mass flow rate 
region. The energy balance of the process in the charging and 
discharging showed that the TES can successfully store and 
release a useful amount of energy. The current dish 
configuration consists of multiple components that expose the 
system to parasitical heat losses. Even with this in hand, the 
TES was able to store more than 80 % of the energy from the 
HTF and it was able to discharge more than 80 % of the 
thermal energy it had stored. During the discharge process, it 
was also found that a significant amount of energy can be 
recovered from the hot piping. With this finding, it is 
recommended that the discharge process always start through 
the hot process piping to extract useful energy. As Fig. 9 shows 
that the receiver's useful energy could only be extracted until 
about 22:00, it would be beneficial to switch the flow path and 
discharge the TES via path 3 in Fig. 2 with less flow resistance. 

The results in Fig. 7 show that the performance of the overall 
system is very low, with efficiency of less than 10 %. The 
authors associate this performance with a large amount of solar 
spillage at the receiver due to incorrect facet calibration 
(individual mirror facets were not correctly aimed or vacuumed 
according to specifications before testing); however, the focus 
of this paper was on the TES and not on the performance of the 
solar dish. It is worth mentioning though, that the dish has the 
potential for very low amounts of spillage (see Ref. [20]) after 
careful calibration. Furthermore, the piping contributed to extra 
heat losses after the receiver and low mass flow rates (below 
design point) also affected the efficiency of the solar receiver. 
Identified aspects contributing negatively to the system are 
being investigated and continuous improvements are 
implemented for future work. 
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Abstract: The Department of Mineral Resources and Energy 

estimates that the industrial sector is the largest consumer of 

energy in South Africa. Approximately 66% of energy end-use 

in industry is for heat generation during manufacturing. South 

African industry has been previously developed in the context of 

low energy prices for coal and electricity. This has resulted in a 

wide range of industrial processes that are inefficient and carbon 

intensive. With rising fuel prices, the prospect of fossil fuel 

depletion, and the continuous global effort to minimise 

environmental impact, it is necessary to develop alternate energy 

sources for heat generation. A significant portion of thermal 

energy can be generated using solar technology. However, solar 

energy supply is variable in nature and does not always match 

demand. It is therefore necessary to integrate thermal energy 

storage systems into solar plants to ensure availability. Thermal 

energy can be stored in three main ways namely, sensible, latent 

and thermochemical heat form. Magnetite is a material that 

undergoes an antiferromagnetic phase change at ~570 °C. This 

causes a reversible spike in the heat capacity of the material. This 

is highly advantageous for thermal energy storage applications 

and allows it to store more heat than other typical sensible 

storage media. Magnetite is widely available in South Africa and 

is often a waste product of other production processes. A lab-

scale prototype was developed to analyse the thermal storage 

characteristics of magnetite in an open (non-pressurised) system 

with air as the working fluid. The magnetite was heated using a 

gas burner in a packed bed reactor and discharged using ambient 

air. Magnetite has the ability to store heat up to 1000 oC which 

makes it suitable for CSP plants. The experimental results will 

be used to validate a CFD model to inform future CSP plant 

designs and for industrial process heating applications. 

Keywords: Thermal Storage; Magnetite; Packed Bed Reactor 

1. Introduction

With the world moving towards renewable energy, recent years 

have also seen advances in a range of storage technologies. It has 

been argued that because thermal energy storage (TES) has a 

combination of high power density and low energy costs making 

it an interesting option as a long-term storage technology. 

Thermal energy can be stored in three main ways namely; 

sensible, latent and thermochemical heat form. Sensible heat is 

the simplest method to store thermal energy and depends on the 

temperature change, mass of storage material and specific heat 

capacity of the material. TES technology is advancing, and it is 

imperative to use a low-cost thermal energy storage material 

(TESM), so as to stay economically relevant in a new growing 

field [1]. 

TES systems use electricity/heat to heat up a material. The 

heated material is then stored in an insulated container to store 

the energy until it is needed. The heat can be converted back to 

electricity through a power conversion device, or it can be used 

directly for process heating applications in industry. 

One of the central issues associated with thermal energy storage 

is the development of a working body that has desirable 

properties (i.e., thermal conductivity, heat capacity, density, 

price, availability, and eco-friendliness). The main issue of a 

great number of current technologies is the excessive capital 

cost, which can prevent them from being successful in a market 

with no incentive schemes. 

The International Energy Agency has drawn up categories that a 

thermal energy storage material is supposed to satisfy, the list is 

as follows [2]:  

• Low commercial cost

• Acceptable eco-balance

• Stable up to 1000 °C

• Large thermal storage capacity (higher than 2.6

MJ/m3.K)

• Available in industrial quantity

• Important lifetime (over 25 years)

• Compatibility with the HTF; and

• Easy implementation.

Magnetite is a common iron oxide (Fe3O4) mineral found in 
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rocks. It is the most commonly mined iron ore [3].  Magnetite is 

recognized as an inert compound that is almost entirely nontoxic 

to all living organisms [4], and its thermophysical properties 

have been researched and seem to be suitable and stable for TES 

applications.  

Magnetite has been shown to have many advantages such as high 

availability, low cost, ecological friendliness, and non-

flammability [1]. The one disadvantage of magnetite is its low 

thermal conductivity, and for this reason it has not been studied 

extensively for TES applications.   

The most interesting characteristic of magnetite is the heat 

capacity which makes it an attractive material for TES. At 

approximately 570 °C it undergoes an antiferromagnetic phase 

transition which is reversible. This causes a spike in the heat 

capacity (refer to Figure 1) of the material. This is highly 

advantageous for thermal energy storage applications as heat is 

not only stored sensibly but also in latent form. Therefore, 

magnetite can store more heat than typical sensible heat storage 

materials such as rock and sand.  

Figure 1. Heat capacity and energy density of magnetite [1] 

Thermal energy storage is a crucial component of CSP systems, 

allowing them to generate electricity beyond daylight hours [5]. 

Excess thermal energy generated during sunny periods is stored 

as heat in various storage mediums with high heat retention 

properties. This stored thermal energy can then be used to 

continue producing steam and electricity during periods when 

the sun isn't shining, allowing them to provide reliable electricity 

output, thereby contributing to renewable energy generation with 

reduced intermittency. Magnetite has the ability to store heat up 

to 1000 oC which makes it suitable for CSP plants [6]. Magnetite 

could be integrated into a thermal storage system of a CSP plant. 

During the charging phase, when the CSP plant is producing 

excess heat, the heat could be used to heat up the magnetite, 

storing thermal energy in the material. During the discharging 

phase, when electricity generation is required but there is no 

sunlight, the heat stored in the magnetite can be released to 

produce steam and drive turbines for electricity generation [7]. 

The system used in this investigation was regenerated at 

approximately 750 oC (which is achievable by concentrated solar 

collectors) and the experimental results are presented and used 

to validate a CFD model.  

There is limited research on the applications of magnetite for 

heat storage currently. The aim of this paper is to investigate the 

performance of magnetite for high-temperature thermal storage 

applications. 

2. Experimental Apparatus

2.1. Test Rig 

A packed bed thermal storage rig was developed at the Council for 

Scientific and Industrial Research (CSIR). The major components 

include a blower, LPG burner and packed bed reactor. The setup is 

shown in Figure 2. 

Figure 2. Diagram of packed bed test rig 

For the charging cycle, the blower draws in air from the 

environment, through the conical inlet flow meter. The pressure 

differential at the throat of the conical inlet is measured to 

determine the mass flow through the rig. The air is then heated by 

the gas heater where the temperature is increased to ~750 oC. The 

arrows in Figure 2, represent the flow path of the air moving 

through the system. Blue is representative of ambient air while red 

is representative of hot air. The hot air, exiting the burner, is 

supplied to the packed bed reactor.  

The cylindrical packed bed reactor has a diameter of 400 mm and 

a height of 620 mm which constitutes an active volume of 

approximately 78 litres. A diffuser is attached to the inlet of the 

packed bed to distribute the air more evenly. A nozzle is attached 

to the exit of the packed bed to allow a smoother flow of air through 
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the rig.  To minimise heat losses to the environment, the reactor 

wall is insulated with a ceramic fibre blanket of 75 mm thickness.  

2.2. Temperature Sensor locations 

The reactor comprises of several thermocouple ports to determine 

the temperature profiles through the packed bed. The 

thermocouples were positioned at 100 mm increments (refer to 

Figure 3) along the axis of the reactor. 

Figure 3. Thermocouple locations in packed bed reactor 

2.3. Magnetite Samples 

Approximately two hundred kilograms of Fine grade Magnetite 

(80-86% passing 45 𝜇𝑚) was purchased from a local supplier 

with a magnetite content of ≥95% and a density of >4500 kg/m3. 

The powder was then compacted, at ‘CERadvance Engineering 

Ceramics’ to form 20x20 mm cylinders (refer to Figure 4) to 

allow for packing into a reactor for testing. The cylinders were 

randomly packed into the reactor. 

Figure 4. Magnetite samples at CERadvance 

3. Experimental Results

The magnetite was heated from the top of the packed bed reactor 

and left to stand, for approximately 15 minutes, during which the 

flow direction was reversed. Ambient air was then supplied to 

the reactor until the heat was completely discharged. The 

primary type of thermal storage is sensible heat storage which is 

a direct form of heat storage and is a function of the temperature, 

heat capacity of the storage medium, and the mass of the storage 

medium. However, at a temperature of approximately 570 oC, a 

phase change occurs in magnetite which causes a spike in the 

heat capacity of the magnetite. This is referred to as an 

antiferromagnetic change which allows additional heat (latent 

heat) to be stored in the medium. 

3.1. Temperature 

The temperature profiles achieved during testing are presented 

in Figure 5. The air temperatures were measured using K-type 

thermocouples, which were calibrated by ‘Repair and Metrology 

Service (Pty) Ltd,’ with a maximum deviation of 0.2 oC. In 

region 1 (between t=0 h and t=1.75 h ), the temperature of the 

air, entering the reactor (z=0 m), was ramped up to 750 oC using 

a gas burner. The temperature was transferred from the upper 

layers to the lower layers as depicted by the thermocline moving 

through the packed bed. The burner and blower were shut off (at 

t=1.75 h) when the outlet temperature approached 250 oC. This 

was due to a temperature limitation on the thermal plastic 

exhaust hose. However, at this point in time, at least half the 

reactor (z=0.3m) was heated to above 600 oC which is beyond 

the antiferromagnetic phase change which occurs at ~570 oC. 

This would have enabled the magnetite to store some latent heat 

in addition to the sensible heat stored. Between t = 1.75 h and 

t=2 h (region 2) the bed was left to stand, to change the system 

configuration, to reverse of the flow direction for discharging the 

heat stored. In region 3 (t=2 h to t=5 h) ambient air (at 

approximately 20 oC ) was supplied until the entire packed bed 

was cooled.  

Figure 5. Temperature profiles 

1 - Charging 3 - Discharging 2 
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3.2. Mass flow rate 

The mass flow rate results are presented in Figure 6.  Between 

t=0 and t=1h the gas flame was not consistent which caused the 

air flow rate to fluctuate. The blower speed was carefully 

controlled to ensure that the temperature achieved was adequate 

for heating up the magnetite. As the temperature was ramped up 

the flow rate did stabilise at approximately 96 kg/h for the 

charging cycle. In region 2 the blower was switched off and 

therefore the flow rate was 0 kg/h. For the discharging cycle, 

since there were no limitations on flow rate it was increased to 

115 kg/h.  

Figure 6. Mass flow rate 

3.3. Heat Stored and Discharged 

The amount of energy stored and released is presented in Figure 

7. This was calculated from the product of the mass flow rate,

specific heat capacity and temperature difference between the

inlet and outlet of the reactor. By integrating the curves shown

(in MATLAB) it was calculated that 25.05 kWh was absorbed

by the magnetite during charging and 22.55 kWh was released

from the reactor during discharging. This equates to an overall

efficiency on 90%. This can be improved by increasing the

thickness of the insulation surrounding the reactor.

Figure 7. Heat stored and discharged 

4. CFD Model

A CFD model was set up in FloEFD to model the heat storage in 

magnetite. The steps taken to set up the model are described in 

the next sections.  

4.1. Solid Materials 

• Packed bed walls and inlet and outlet cones: Inconel

(selected from database)

• Insulation: Ceramic Fibre Blanket (User defined)

4.2. Assumptions 

• Density of Magnetite powder: 4500 kg/m3 

• Void fraction: 0.5 (Calculated based on magnetite mass,

density and reactor volume)

• The packed bed can be modelled as a porous medium

4.3. Steps taken to define porous medium 

4.3.1.  Pressure Drop 

The Eisfeld and Schnitzlein equation  was used to determine the 

pressure drop through the packed bed, with respect to flow rate, 

and can be calculated from equation 1 [8]. This equation is based 

on experimental data and accounts for particle shape, effect of 

Reynolds number on coefficients and wall effects. The results 

agree with the widely used Ergun equation [9] for lower mass 

flow rates (between 0 and 0.035 kg/s) as shown in Figure 8. 

1 - Charging 3 - Discharging 2 

Heat Stored 
Heat 

Discharged 
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∆𝑃

𝑍𝜌𝑓𝑈𝑧
2 D

𝜀3

(1 − 𝜀)
=  

190𝐴𝑤
2

𝑅𝑒𝐸𝑟𝑔

+
𝐴𝑤

𝐵𝑤
(1) 

Where: 

𝑅𝑒𝐸𝑟𝑔
=

𝜌𝑓𝑈𝑧𝐷

 𝜇𝑓(1 − 𝜀)
 (2) 

𝐴𝑤
=   1 +

2

3(𝐷𝑟/𝐷)(1 − 𝜀)
 (3) 

𝐵𝑤

 
=  [2(𝐷𝑟/𝐷)2 + 0.77]2  (4) 

𝐷 =  
6∑𝑉𝑝

 ∑𝐴𝑝

 (5) 

Z: Height of packed bed (m) 

∆P: Pressure drop through packed bed (Pa) 

𝑈𝑧: Superficial fluid velocity (m/s)

𝜀:  Bed void factor 

𝜌𝑓: Density of fluid flowing through packed bed (kg/m3)

 𝜇𝑓: Viscosity of fluid flowing through packed bed (Pa.s)

𝐷: Particle size (m)  

𝐷𝑟: Diameter of reactor (m)

𝑉𝑝: Particle volume (m3)

𝐴𝑝: Particle surface area (m2)

Figure 8. Pressure drop vs mass flow rate 

4.4. Boundary Conditions 

4.4.1. Charging 

• Inlet (top): Experimental inlet temperature and mass

flow rate

• Outlet (bottom): Ambient pressure

4.4.2.  Discharging 

• Inlet (bottom): Ambient temperature (~20 oC) air at

flow rate of ~0.032 kg/s

• Outlet (top): Ambient pressure

4.5. Running the model 

During the charging cycle, approximately half the packed bed 

was heated to at least 600 oC which took 1.75 h. The bed was left 

standing for 0.25 h as was done in during experimental testing. 

The discharging cycle was run thereafter by supplying air at 

approximately 20 oC, until the entire packed bed cooled to 

ambient, which also took approximately 2.5 h. The temperature 

distribution through the packed bed is shown in Figure 9 at a time 

of 1.75 h.  

4.6. Validation of model against experimental data  

The experimental results and the CFD temperature profiles are 

plotted on the same set of axes in Figure 10. There is a good 

correlation between the two. Figure 11 shows the energy stored 

and discharged for CFD Model and experimental testing on the 

same plot. The results agree within 5% which is generally 

acceptable in literature [10]. The deviation could be due to the 

fact that the magnetite was mixed with approximately 5 wt% 

binder, before compacting, which could have affected the 

thermal properties and density slightly. The reactor also contains 

several thermocouple ports which could have led to leaks and 

heat losses, although great care was taken during testing to 

ensure that the ports were sealed.  

Figure 9. Magnetite packed bed CFD model 
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Figure 10. Experimental and CFD temperature profiles 

Figure 11. Energy stored and discharged in experimental 

and CFD model 

5. Conclusion

Magnetite is a promising material for thermal storage and has the 

ability to store heat up to 1000 oC, which makes it suitable for 

CSP plants and industrial regenerators. A lab-scale prototype 

was setup to investigate the performance of magnetite for high-

temperature thermal storage applications. Since the 

antiferromagnetic phase change occurs at ~570 °C, the magnetite 

in the upper half of the reactor was heated to above 600 oC. The 

entire packed bed could not be heated due to temperature 

limitations on the exhaust of the reactor. After heating the 

magnetite, ambient air was supplied to discharge the heat stored. 

From the experimental results, it was calculated that 25.05 kWh 

was absorbed by the magnetite during charging. This equates to 

an energy storage density of 320 kWh/m3. During discharging 

22.55 kWh was released from the reactor which results in an 

overall efficiency of 90% which is higher than a typical sensible 

heat storage system of 70% [11]. A CFD model was developed 

to inform future CSP plant designs and for industrial waste heat 

recovery applications. The experimental results were used to 

successfully validate the CFD model.    
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Abstract: With South Africa amidst an energy crisis, there is a 

need to re-evaluate current domestic water heating technology 

by implementing more efficient water heating systems, not only 

to help relieve excess pressure on the national power grid but to 

reduce consumer costs. Thermal energy storage (TES), more 

specifically the use of latent heat storage systems, provides a 

unique solution with the ability to take advantage of excess 

renewable energy, off-peak electricity tariffs and waste heat 

from industry which can be stored for later use. Latent heat 

storage is achieved using phase change materials (PCMs), 

specifically solid-liquid PCMs. These are classified into organic 

and inorganic substances that store and release energy when 

needed. Inorganic salt hydrates, specifically sodium acetate 

trihydrate (SAT) and its mixtures are presented in the following 

study. The high energy density, melting temperature of 58°C and 

relative stability in a supercooled state make SAT an ideal PCM 

candidate for TES and domestic water heating applications. 

Through small-scale experiments, including a Modified T-

History method and simple heat loss method, the thermophysical 

and behavioural properties of SAT and its mixtures with excess 

water and Xanthan Gum were analysed. The T-History method 

confirmed that the latent heat of fusion of the SAT supplied was 

248.7 kJ.kg. The simple heat loss method determined that the 

heat content of SAT with excess water decreased with an 

increasing percentage of additional water. It was also observed 

that the addition of Xanthan Gum of between 0.4-0.5 wt.% 

increased the heat content although not as significantly as in the 

comparative literature. However, a decrease in phase separation 

and spontaneous nucleation was observed with the Xanthan Gum 

stabilizing the solution. The results indicated that SAT shows 

potential as a viable alternative for on-demand domestic hot 

water applications in South Africa. 

Keywords: Thermal energy storage; Phase change material; 

Sodium acetate trihydrate; Domestic water heating 

1. Introduction

Electric water heating accounts for roughly 40% of the energy 

consumed by South African households [1]. It is estimated that 

of the 17 million South African households, 5.4 million use 

electric geysers amounting to 40 GWh of electricity usage daily. 

At peak times, it is noted that these water heaters account for 

drawing an estimated 12% (4 GW) of the power grid’s operating 

capacity [2]. Implementation of the most appropriate PCMs and 

efficient heat exchanger designs are two key aspects to 

developing a successful TES system for domestic use.  

1.1. SAT as a TES material 

SAT or 𝑁𝑎𝐶𝐻3𝐶𝑂𝑂 ∙ 3𝐻2𝑂 is an inorganic salt hydrate that

releases heat when crystalizing and changing phase between 

liquid and solid. It is a compound of water, acetic acid and 

sodium consisting of 60.3 wt.% sodium acetate and 39.7 wt.% 

water. Some of the most attractive properties include a high 

energy density with a heat of fusion of 264 kJ/kg, a melting 

temperature of 58°C (falling in the ideal temperature range for 

domestic hot water heating) and the ability to supercool and 

remain stable at ambient temperatures.   Aside from being a mild 

skin irritant, SAT is also non-toxic, not flammable and is a 

relatively low-cost material which is available in large quantities. 

[3], [4], [5], [6], [7] 

1.1.1.  Associated challenges using SAT 

One of the primary problems of using SAT is incongruent 

melting which causes phase separation where anhydrous sodium 

acetate precipitate forms. The anhydrous crystals settle at the 

bottom of the container and are unable to react with the water 

which settles at the top due to differing densities. As the amount 

of precipitate increases with every cycle, over time the heat 

storage capacity is reduced.  

There are several ways to help combat incongruent melting and 

consequential phase separation. One way is in the container 

design itself. Dannemand et al. [8] found that phase separation 

was reduced when decreasing the height of the material by 

designing SAT containers with reduced heights. Another way 

includes altering the mixture itself with additives such as extra 

water and thickening agents. The extra water principle reduces 
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the formation of anhydrous crystals maintaining a saturated 

solution. However, negative impacts of this method include a 

decrease in volumetric heat storage capacity and a potential 

decrease in thermal conductivity [4], [9]. Finally, numerous 

thickening agents have been widely tested throughout the 

literature including Carboxy-Methyl Cellulose, Xanthan Gum 

and solid and liquid polymer additives [7], [10], [11]. The 

addition of Xanthan gum was a focus in the following 

experiments due to availability and the ability to increase the heat 

content of the storage material. 

1.1.2.  Triggering SAT 

As SAT has the ability to supercool up to 90°C below its 

nucleating temperature, this means that nucleation must be 

initiated by a “triggering method”. Implementing triggering 

methods brings about additional complexities as it must be 

reliable over hundreds if not thousands of charging and 

discharging cycles [11]. Methods of activation include 

introducing a SAT crystal (seed crystal) into to the supercooled 

mixture, creating a “cold spot” using liquid carbon dioxide or 

using a Peltier device to initiate cooling below the maximum 

degree of supercooling for SAT. The advantage of using a 

material that can be triggered is that heat can be stored and 

discharged only when needed. 

2. SAT applications for domestic water heating

SAT storage can be applied to South African domestic water 

heating in several ways. Several studies have incorporated PCMs 

into standing hot water tanks [6]. As seen in Fig. 1a), one way is 

by submerging the PCM which is encapsulated in tubes or 

spheres to maintain the internal hot water temperature. Another 

way, in Fig. 1b) is by creating an outer layer around the geyser 

tank which can be triggered, helping to reduce heat loss to the 

surroundings, thus maintaining the internal water temperature 

and reducing reheat time. Both these methods above aim to 

reduce standing losses.  

Another application seen in Fig. 1c) focuses on creating an on-

demand water heating vessel. The concept includes a modular 

storage vessel with heat exchange pipes where cold water enters 

a module where the PCM has been triggered and the number of 

activated modules will depend on the user demand. SUNAMP, a 

company based in the United Kingdom, currently offers a 

modular heat storage battery utilizing a SAT-based PCM which 

replaces boilers for water and space heating [12]. Water is heated 

as needed by the consumer using a heat exchanger and the PCM, 

Plentigrade P58. Once fully discharged the PCM is then 

recharged using an immersed heating element.  

Fig. 1. a) Hot water tank with PCM encapsulated in tubes 

b) Hot water tank with outer layer of PCM

c) Picture showing the internal structure of the SUNAMP

Thermino heat battery [12] 

In the above-mentioned concepts, thermal cycling of the PCM, 

the power sources for reheating and the related consumption 

needed to achieve this is crucial for ensuring that the storage 

system is energy efficient. For example, SUNAMP thermal 

batteries offer integration for reheating with one or multiple 

power sources which are interchangeable, including grid power, 

heat pumps and solar technology. Due to the proprietary nature 

of SUNAMP’s SAT-PCM mixture, it is necessary to conduct 

research on the development of a material and system unique to 

South Africa’s heating needs and power supply challenges. 

3. Experimental Method

Two experiments were conducted to validate the properties and 

observe the behaviour of SAT. The SAT was purchased from 

Thermo Fisher Scientific. The experiments include the T-History 

Method developed by Zhang et al. [13], Modified T-History 

Method by Hong et al. [14], [15] and a simple heat loss method 

(SHLM) by Kong et al. [7]. 

3.1. T-History Method 

Zhang et al. [13] developed the original T-history method in the 

1990s which was later modified in 2003 by Hong et al [14], [15] 

to improve accuracy. The experiment was used to determine the 

specific heat capacity of SAT in both solid and liquid states as 

well as the latent heat of fusion. The experiment was set up as 

seen in Fig. 2.  

Fig. 2. Schematic diagram of the T-History experiment 

setup  
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Eight SAT samples were tested over four experiments. The 

procedure consisted of filling and heating three 150 x 16 mm test 

tubes to 80°C using a hot water bath. Two tubes were filled to 80 

mm (15 grams) with SAT and one to 80 mm (±12 ml) with water. 

When thermal equilibrium was reached, the tubes were removed 

from the bath and exposed to the ambient temperature. Once 

cooled to ± 48°C, the SAT samples were triggered with an SAT 

crystal and then allowed to cool to room temperature as seen in 

Fig. 3. Temperature readings for each sample and the ambient 

temperature were taken throughout the cooling process.  

Fig. 3. T-History experimental setup 

Fig. 4 and Fig. 5 represent the cooling process for SAT and water 

respectively, and the calculation of the inflection point. The 

cooling curves were used to extract specific points which were 

substituted into the energy equations, Equations (1)-(6) derived 

in Hong et al. [14]. The validity of the method is based on the 

Biot number (𝐵𝑖 = ℎ𝑟/𝑘 ) which should be less than 0.1. By 

meeting these criteria, the lumped capacitance method is 

applicable and the temperature distribution inside the test tubes 

can be regarded as uniform. 

Fig. 4. Representation of a modified T-History curve during 

cooling of SAT (adapted from Hong et al. [14], [15]) 

Fig. 5. Representation of a modified T-History curve during 

cooling of water (adapted from Hong et al. [14], [15]) 

(𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒
+ 𝑚𝑆𝐴𝑇𝑐𝑝𝑆𝐴𝑇(𝐿)

) (𝑇0 − 𝑇𝑠) = ℎ𝐴𝑡𝑢𝑏𝑒𝐴1 (1) 

(𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒
+ 𝑚𝑆𝐴𝑇 (

𝑐𝑝𝑆𝐴𝑇(𝐿)
+ 𝑐𝑝𝑆𝐴𝑇(𝑆)

2
)) (𝑇𝑚 − 𝑇𝑖)

+ 𝑚𝑆𝐴𝑇𝐻𝑆𝐴𝑇 = ℎ𝐴𝑡𝑢𝑏𝑒𝐴2

(2) 

(𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒
+ 𝑚𝑆𝐴𝑇𝑐𝑝𝑆𝐴𝑇(𝑆)

) (𝑇𝑖 − 𝑇𝑟𝑒𝑓) = ℎ𝐴𝑡𝑢𝑏𝑒𝐴3 (3) 

(𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒
+ 𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑝𝑤𝑎𝑡𝑒𝑟

)(𝑇0 − 𝑇𝑠) = ℎ𝐴𝑡𝑢𝑏𝑒𝐴𝑤,1
(4) 

(𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒
+ 𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑝𝑤𝑎𝑡𝑒𝑟

)(𝑇𝑚 − 𝑇𝑖) = ℎ𝐴𝑡𝑢𝑏𝑒𝐴𝑤,2
(5) 

(𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒
+ 𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑝𝑤𝑎𝑡𝑒𝑟

)(𝑇𝑖 − 𝑇𝑟𝑒𝑓) = ℎ𝐴𝑡𝑢𝑏𝑒𝐴𝑤,3 
(6) 

Where 𝐴1 = ∫ (𝑇 − 𝑇𝑎𝑚𝑏,∞)
𝑡1

t0
𝑑𝑡. Table 1 describes the other 

area ranges corresponding with Fig. 4 for SAT and Fig. 5 for 

water which apply through Equations (1)-(9). 

Table 1. Area ranges used in Equations (1)-(9) 

SAT Water 

Temperature 

Range 
Area 

Time 

Range 
Area 

Time 

Range 

𝑇0 − 𝑇𝑠 𝐴1 𝑡0 − 𝑡1 𝐴𝑤,1 𝑡0
′ − 𝑡2

′

𝑇𝑚 − 𝑇𝑖 𝐴2 𝑡1 − 𝑡2 𝐴𝑤,2 𝑡1
′ − 𝑡3

′

𝑇𝑖 − 𝑇𝑟𝑒𝑓 𝐴3 𝑡2 − 𝑡3 𝐴𝑤,3 𝑡3
′ − 𝑡4

′

Using Equations (1)-(6), the equations for the specific heat in the 

solid and liquid phase as well as the latent heat of fusion can be 

derived as follows: 

𝐶𝑝𝑆𝐴𝑇(𝑆)
=

𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑝𝑤𝑎𝑡𝑒𝑟
+ 𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒

𝑚𝑆𝐴𝑇

×
𝐴3

𝐴𝑤,3

−
𝑚𝑡𝑢𝑏𝑒

𝑚𝑆𝐴𝑇

𝑐𝑝𝑡𝑢𝑏𝑒
 

(7) 
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𝐶𝑝𝑆𝐴𝑇(𝐿)
=

𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑝𝑤𝑎𝑡𝑒𝑟
+ 𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒

𝑚𝑆𝐴𝑇

×
𝐴1

𝐴𝑤,1

−
𝑚𝑡𝑢𝑏𝑒

𝑚𝑆𝐴𝑇

𝑐𝑝𝑡𝑢𝑏𝑒
 

(8) 

𝐻𝑆𝐴𝑇 = − (
𝑚𝑤𝑎𝑡𝑒𝑟

𝑚𝑆𝐴𝑇
𝑐𝑝𝑡𝑢𝑏𝑒

+
𝑐𝑝𝑆𝐴𝑇(𝐿)

+ 𝑐𝑝𝑆𝐴𝑇(𝑆)

2
) (𝑇𝑚 − 𝑇𝑖)

+
𝑚𝑤𝑎𝑡𝑒𝑟𝑐𝑝𝑤𝑎𝑡𝑒𝑟

+ 𝑚𝑡𝑢𝑏𝑒𝑐𝑝𝑡𝑢𝑏𝑒

𝑚𝑆𝐴𝑇
×

𝐴2

𝐴𝑤,2
(𝑇𝑚 − 𝑇𝑖) 

(9) 

3.2. Simple heat loss method (SHLM) 

Kong et al. [7] developed the SHLM to evaluate the heat content 

of SAT. The method used a heated water sample to determine 

the heat loss coefficient (𝑈𝐴) of a well-insulated box. The 

coefficient was then used to determine the heat content (HT) of 

the supercooled SAT samples under the same conditions. 

Fig. 6 below shows a schematic diagram of the experimental 

setup. Glass jars with lids containing the sample were placed into 

the well-insulated wooden box. Four thermocouples were used 

to take temperature measurements during cooling, three were 

attached to the outer surface of the jar and one was used to 

measure the ambient temperature.   

Fig. 6. Schematic diagram of the SHLM experimental setup 

3.2.1. Determining the heat loss coefficient UA (W/K) 

Using the well-known properties of water, the heat loss 

coefficient 𝑈𝐴 (𝑊/𝐾) was determined by cooling down a 

heated sample of 150 ml of water to ambient temperature. UA 

was then calculated from the derived logarithmic equation below 

[7]. The masses and specific heat values which make up the total 

heat capacity (𝑚𝑐𝑝) of the sample include the glass jar, lid and

water. The time period, ∆𝑡, was the time interval of the point 

calculated for the UA value. The points calculated for each time 

interval were then plotted against the sample temperature and a 

quadratic equation for the trendline was regressed with an 

appropriate R-square value.  

𝑈𝐴 =
𝑚𝑐𝑝

∆𝑡
𝑙𝑛 |

𝑇𝑒𝑛𝑑 − 𝑇𝑎𝑚𝑏

𝑇𝑠𝑡𝑎𝑟𝑡 − 𝑇𝑎𝑚𝑏
| (10) 

To attain the measurements for the SAT samples, eight samples 

were prepared. The first four samples had 150 grams of SAT 

mixed with increasing amounts of water (0 ml, 6 ml, 14.5 ml and 

17.5 ml), the final weight percent of each being 40 wt.%, 42 

wt.%, 45 wt.% and 46 wt.% respectively. The remaining four 

samples were carefully mixed with 150 grams of SAT and 

increasing amounts of Xanthan Gum powder (0.3 g, 0.45 g, 0.6 

g and 0.75 g), the final weight percent of each being 0.2 wt.%, 

0.3 wt.%, 0.4 wt.% and 0.5 wt.% respectively. These samples 

were melted and cooled to ambient temperature in glass jars and 

left in a supercooled state for between 7 and 40 days. A sample 

was then placed into the well-insulated box and the solution was 

triggered using a SAT crystal. The temperature data was 

recorded as the sample cooled back down to room temperature. 

Equation (11) was then used to determine the heat content (𝐻𝑇). 

𝐻𝑇 = ∫ 𝑈𝐴(𝑡)[𝑇𝑆𝐴𝑇(𝑡) − 𝑇𝑎𝑚𝑏(𝑡)]𝑑𝑡/𝑚𝑆𝐴𝑇 
𝑡+∆𝑡

𝑡

 (11) 

4. Results

4.1. Modified T-History Method 

The following results were attained from the four experiments 

and Fig. 7 shows an example of the resulting T-History curve 

and derivative curve from one of the experiments. From the 

differentiate the inflection point was determined for each 

experiment and the other relevant temperature points were taken 

from the recorded data. 

Fig. 7. T-History curve and inflection point of SAT 

Table 2 summarizes the results from the eight samples and 

compares them to results attained in the literature. 

Table 2. Results comparison of 𝑯𝒎, 𝑪𝒑𝒔 and 𝑪𝒑𝒍

Sample 
𝑪𝒑𝒔

(𝒌𝑱/𝒌𝒈∙𝑲) 
𝑪𝒑𝒍

(𝒌𝑱/𝒌𝒈∙𝑲) 
𝑯𝒎 

(𝒌𝑱/𝒌𝒈) 

1A 2.58 3.33 237.23 

1B 2.52 3.21 240.14 

2A 2.20 3.54 268.14 
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2B 2.48 3.38 227.70 

3A 2.32 3.26 254.30 

3B 2.34 3.25 255.51 

4A 2.35 3.11 252.27 

4B 2.41 3.03 253.88 

Average 2.40 3.26 248.65 

Reference value [6] 1.68 2.37 266 

Reference value [14] 2.25 3.77 245 

Reference value [15] 2.26 3.74 245 

Table 3 shows the temperatures at triggering (𝑇𝑠), the maximum

temperature reached after triggering (𝑇𝑚) and the temperature of

the inflection point (𝑇𝑖).

Table 3. Temperature comparisons 

Sample 𝑻𝒎 𝑻𝒔 𝑻𝒊 𝑻𝒎 − 𝑻𝒊 𝑻𝒔 − 𝑻𝒊 

1A 57.8 47.6 46 11.8 1.6 

1B 57.8 47.9 46.9 10.9 1 

2A 57.8 47.5 45.7 12.1 1.8 

2B 57.6 47.2 46.4 11.2 0.8 

3A 57.7 47.5 46.8 10.9 0.7 

3B 57.9 48.3 44.9 13 3.4 

4A 57.5 48 43.3 14.2 4.7 

4B 57.9 47.7 47.6 10.3 0.1 

Average 57.8 47.7 46.0 11.8 1.8 

Reference [14] 58.0 47.3 44.1 14.0 3.3 

4.2. SHLM 

The following results were attained for the SHLM experiments. 

A 60-minute (3600s) time interval was used to calculate each 

point shown in Fig. 8 using Equation (10). 

Fig. 8. An example of the regressed UA curve with 

quadratic equation 

Three tests were repeated for each of the eight samples and the 

temperature data was used to calculate the heat content using 

Equation (11). Fig. 9 shows the results for the samples with the 

tested percentages of extra water and Xanthan Gum. 

Fig. 9. Graph showing the heat content of the samples with 

extra water and Xanthan Gum 

5. Discussion

5.1. Modified T-History Method 

The results obtained for the Modified T-History method are seen 

in Table 2. With an average latent heat of fusion of 248.7 kJ/kg, 

this falls within 2% of the results obtained by Hong et al. [14], 

[15] and within 6.5% of the results obtained from differential

scanning calorimetry (DSC) with a value of 266 kJ/kg [6]. There

are several factors which can influence the experimental results

including any variation in ambient temperature or air velocity in

the room during cooling which would contribute to variance in

the convective heat transfer coefficient. Another reason for

deviation could also be in determining the point of inflection

which in turn is used to determine the boundary between the

sensible and latent heat released during cooling. The average

temperature at the point of inflection (𝑇𝑖) across all eight

experiments was 46°C, nearly 2°C higher than the 44.1°C

average attained by Hong et al. [14]. The increased temperature

at the inflection point could decrease the area calculated for the

heat released between the temperature points 𝑇𝑠 and 𝑇𝑖  thus

reducing the latent heat of fusion (𝐻𝑚). The latent heat of fusion

is an important parameter to evaluate as it indicates how much

energy is absorbed and released during the phase change of a

PCM. This may vary depending on the supplier and purity of the

PCM therefore determining baseline values using the T-History

method aids in developing mixtures with different additives.

5.2. SHLM 

5.2.1. Phase separation 

Exploring ways to reduce phase separation is an important step 

in developing a TES system which operates successfully over 

hundreds if not thousands of cycles. Fig. 10 a) shows how phase 

separation occurs in a SAT sample with 42 wt.% water over 48-

hours. After being supercooled for 48-hours an accumulation of 

sediment is seen at the bottom of the jar with a layer of water on 
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top. The supercooled SAT sample with 45 wt.% water in Fig. 10 

b) shows no crystal accumulation due to the increased excess

water ensuring a constantly saturated solution. Comparing the

heat content calculated in Fig. 9 for each sample, an average

decrease in the heat content of 14.7 kJ/kg between the 42 wt.%

and 45 wt.% samples is observed. Therefore, although there is

reduced phase segregation with increased extra water, there is a

substantial decrease in the sample heat content. Despite that, for

the SAT samples with lower water percentages, increased build-

up of anhydrous crystal sediment occurs which cannot be

dissolved also reducing the heat content over time.

Fig. 10. a) Phase separation of SAT samples with 42 wt.% 

𝑯𝟐𝑶, b) Phase separation of SAT samples 45 wt.% 𝑯𝟐𝑶

and c) SAT sample with 0.3 wt.% Xanthan Gum 

The use of Xanthan Gum as an additive aims to combat phase 

separation and increase heat content in the SAT samples. Fig. 10 

c) shows the change in the consistency of a sample which is

mixed with 0.3 grams of Xanthan Gum. The sample took on a

more gelatinous texture during heating as the Xanthan Gum was

carefully stirred in. After cooling, the sample showed a coarse

but uniform texture throughout with no accumulation of water or

crystals on the top or bottom of the container. It was noted

however that during heating and reheating the Xanthan Gum

accumulated in the top of the jar and needed to be stirred before

cooling. Upon closer observation, small air bubbles seemed to be

trapped within the gelatinous layer causing it to float to the top.

In application, this would be a problem because at a larger scale

the material cannot be manually stirred, and the separation may

negatively impact the thermal performance and cyclability of the

system.

5.2.2. Heat content of SAT with additional water 

The heat content for SAT samples with 40 wt.%, 42 wt.%, 45 

wt.% and 46 wt.% water were tested. The samples were prepared 

and supercooled for between 7 and 40 days with tests repeated a 

total of three times for each sample. Fig. 9 shows a graph with 

the heat content plotted for each sample. The highest average 

heat content at 190.3 kJ/kg was for the 42 wt.% mixture, however 

this mixture displayed significant phase separation. The sample 

with the lowest measured heat content was the 46 wt.% sample 

at 171.4 kJ/kg which showed no phase separation after all three 

tests. The 40 wt.% sample which had no extra water added shows 

a clear decrease in heat content after each test as seen in Fig. 9. 

This indicates that increasing phase separation occurring after 

each cycle does decrease the heat content which further 

emphasise the benefit of including additives to improve SAT 

mixtures. 

5.2.3. Heat content of SAT with Xanthan Gum 

The heat content for SAT samples with 0.2 wt.%, 0.3 wt.%, 0.4 

wt.% and 0.5 wt.% Xanthan Gum were tested and like with the 

additional water samples, the samples were also supercooled for 

a period of between 7 and 40 days and the tests were repeated 

three times. Fig. 9 shows the resulting heat content 

measurements. The 0.4 wt.% sample had the highest average 

heat content at 200.5 kJ/kg after three tests. Generally, the 

average heat content for the 0.3 wt.%, 0.4 wt.% and 0.5 wt.% 

samples was between 10-25 kJ/kg lower compared to the results 

attained by Kong et al. [7]. Factors which may have contributed 

to achieving lower results include fluctuations in the ambient 

temperature as the tests were conducted over several weeks with 

the ambient temperature averaging between 17.5°C and 22°C. 

Deviations in ambient temperature affect the calculation of the 

area under the cooling curve used in Equation (11). Higher 

ambient temperatures result in decreased areas and a subsequent 

decrease in the heat content calculated.  

6. Conclusion

Both the Modified T-History Method and SHLM were used to 

determine and verify the thermophysical and behavioural 

properties of SAT. The results attained from the Modified T-

History Method allowed for the specific heat capacity in both the 

solid and liquid phase and the latent heat of fusion to be obtained. 

The values were comparable with the literature with latent heat 

of fusion averaging at 248.7 kJ/kg. The SHLM was used to 

determine and compare the heat content of SAT samples with 

excess water and Xanthan Gum. For the samples with extra 

water, the heat content was greatest in the 42 wt.% samples 

averaging at 190.3 kJ/kg however significant phase separation 

occurred over 48 hours. The 45 wt.% and 46 wt.% water samples 

had no phase separation but a much lower heat content averaging 

at 175.6 kJ/kg and 171.4 kJ/kg respectively.  The addition of 

Xanthan Gum resulted in a solution with a more uniform texture 

throughout with no evidence of phase separation in any of the 

mixtures after supercooling in all three tests. Analysis of the heat 

content revealed that there was an increase in the Xanthan Gum 

sample mixtures with the highest average heat content in the 0.4 

wt.% sample at 200.5 kJ/kg. However, the heat content overall 

for the Xanthan Gum mixtures was significantly lower compared 

to the results attained in the literature with a potential cause being 

a fluctuation in the ambient temperature during cooling. One 
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other shortcoming was the accumulation of the Xanthan Gum at 

the top of the container during heating and reheating. This was 

rectified during the experiments by stirring the mixture 

thoroughly before supercooling which would not be an 

appropriate solution in practical application. Overall, SAT shows 

promise as a candidate PCM in TES for domestic hot water 

heating in South Africa. Given that SAT can be supercooled and 

remain stable before being triggered on demand provides a great 

opportunity to offset the demand placed on the grid during peak 

consumption periods. Furthermore, SAT could reduce standing 

losses in geysers by helping maintain the hot water temperature 

for extended periods. Moving forward, SAT mixtures with extra-

water in the region of 42-43 wt.% will be used to conduct further 

research on the most appropriate heating configurations. The 

intention is to reduce phase separation sufficiently without 

significantly compromising on heat content to draw more 

accurate conclusions on the prospect of TES scalability using 

SAT. However, further research needs to be done on refining the 

PCM mixture, additives, preparation and containment methods 

to ensure the storage unit can operate over hundreds if not 

thousands of cycles.  
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Nomenclature 

𝑚 Mass (kg) 

𝑐𝑝 Specific heat capacity (kJ/kg.) 

𝑇 Temperature (°C) 

ℎ Convective heat transfer coefficient (W/m²K) 

𝑘 Thermal Conductivity (W/m. K) 

𝐴𝑡𝑢𝑏𝑒 Convective heat transfer area of a tube (m²) 

𝐴 Designated area under the curve 

𝐻𝑚 Latent heat of fusion (kJ/kg) 

𝑟 Tube radius (m) 

𝐸 Heat content (kJ/kg) 

𝑈𝐴 Heat loss coefficient (W/K) 

𝐻𝑇 Heat Content (kJ/kg) 

𝑡 Time (s) 

Subscript 

𝑙 Liquid 𝑖 Inflection point 

𝑠 Solid/solidification 𝑟𝑒𝑓 Reference point 

𝑎𝑚𝑏 Ambient 𝑚 Melting point 

𝑤 Water XGUM Xanthan Gum 
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Abstract: Due to the stochastic behaviour of wind

power generation, accurately predicting wind speed and

power generation is fundamental to the reliable and

large-scale adoption of wind power integration onto the

electrical grid. In this research paper, a compact re-

view is presented on wind power forecasting, which fo-

cuses on the classification of methods and the evalua-

tion thereof. Specific factors related to wind speed and

power prediction have also been highlighted. To fur-

ther ensure the relevance of this paper, the literature re-

view has been limited to research published within the

last 5 years. Based on the most common research trends,

future recommendations are made to improve accuracy

and aid development in underexplored researched do-

mains. This review ultimately provides a framework for

enhancing the implementation of wind power forecast-

ing. This, in turn, leads to improvements in ancillary ser-

vice provision through wind energy, resulting in the op-

timal integration of wind energy into the electrical grid.

Keywords - Wind Power; Wind Power Forecasting;

Traditional Statistical Models; Physical Models; Neu-

ral Networks; Hybrid Models; Machine Learning.

1 Introduction

The global economy and human living standards have

experienced substantial growth in recent years, leading

to a corresponding surge in energy demand [1]. Tradi-

tionally, this demand has been met with fossil fuels, like

coal, oil and natural gas. However, these sources of en-

ergy production have gained a negative reputation due to

the pollutants released [1], [2]. Furthermore, fossil fuels

are limited in reserves, so renewable energy sources are

preferred if feasible [3]. As set out by the Paris Agree-

ment, two-thirds of the global energy demand must be

supplied by renewable energy to limit the global temper-

ature increase to less than 2◦ [2], [4]. Of all the renew-

able energy types, like solar photovoltaic and bioenergy,

wind energy has become very popular due to its high ef-

ficiency, abundance and low environmental impact and

the ability to produce energy during the night [2] [5].

Wind energy is increasing in popularity globally. As

shown by the statistics in the Global Wind Report 2023,

the total installed wind capacity in 2022 was 907 GW,

an increase of 9% compared to 2020 [6].

With the increasing energy demand and subsequent rise

in renewable energy integration, like wind energy, ad-

ditional challenges emerge. The challenges encompass,

market design, real-time grid operations, ancillary ser-

vice requirements and costs, competitive technologies,

power system reliability and stability as well as trans-

mission capacity upgrades and standards [7]. Another

major challenge with integrating wind energy into the

electrical grid is the stochastic behaviour of the wind [1],

[2]. This stochastic behaviour causes challenges with

wind power management, as a balance between power

and demand is highly desired in distribution networks

[2]. Forecasting, however, is considered to be an effec-

tive solution to many of these problems.

This review article will discuss literature regarding state-

of-the-art wind power forecasting. Section 3 elaborates

on forecasting literature specifically for wind energy.

The literature discusses how sources classify forecast-

ing models, some of the frequently used comparison

metrics, and the advantages and disadvantages of each

method. In Section 4, there is a brief discussion of

two model enhancements. Section 5 briefly summarises

some state-of-the-art models and methods used and their

respective pros and cons. With the literature from the

state-of-the-art models and methods, shortcomings in

the current models will be identified to make future rec-

ommendations for improving wind power forecasting in

Section 6. With the knowledge gained from this review,

forecasting models can be used and developed to best

suit the provision of ancillary services from renewable

energy sources, specifically wind farms.

2 Methodology

Machine learning is a major topic of interest in multi-

ple research fields globally. Due to this popularity, a

multitude of research papers were available online and

adequate filtering was required. Google Scholar and

StellenboschUniversity’s SUN-Scholar were used as in-

ternet filters for searching through research databases,

ensuring appropriate articles were found. Forecasting-
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specific research was desired, specifically wind power

forecasting, therefore, most searches contained the term

forecasting. Frequently used search terms included, but

were not limited to: Wind Power Forecasting, Renew-

able Power Forecasting, Solar Forecasting, Forecast-

ing Methods. The sources were then evaluated with the

following criteria.

1. The article should entail forecasting methodologies

with an emphasis on machine learning.

2. The article should have been published in the last 5

years.

3. Higher impact factor journals were preferred.

The evaluation criteria ensured high-quality sources

were obtained, contributing to the relevance of this re-

view.

3 Forecasting Literature

3.1 Wind Speed and Wind Power

Traditionally, there are twoways to performwind power

forecasting. The first is to forecast wind power with

given historical wind power data [1]. The second

method involves predicting the wind speed, and then

forecasting the wind turbine power according to wind

turbine power curves. These curves reflect the power

generated at different wind speeds [8], [9]. Therefore,

research is commonly found on wind speed and wind

power forecasting.

The two main factors influencing the power output of a

wind turbine are wind speed and wind direction. Wind

speed and wind direction further depend on other atmo-

spheric conditions and location [11]. The relationship

between wind speed and wind power can be given by

Equation 1, where ρ is the air density ( kg
m3 ), which de-

pends on air pressure and air temperature, A (m2) is the

area of the wind passing through the turbine and v (ms )

is the wind speed.

PA =
1

2
ρAv3 (1)

PA (watt) is the theoretical available power in the wind,

but wind turbines cannot fully extract all the power in

the wind. The realistic power extraction is demonstrated

with Equation 2, whereCp is the power coefficient. The

power coefficient is determined by the tip angle, blade

design and the relationship between wind speed and ro-

tor speed, with an upper-efficiency limit for all turbines

called the Betz limit, which is 0.593 (59.3 %) [23].

PR = CpPA (2)

This brief summary highlights that an error in wind

speed prediction will result in a cubic error in wind

power prediction, emphasizingwhy accurate wind speed

predictions are important [11].

3.2 Time Horizon Classification

Wind power or wind speed forecasting models can be

grouped into different time scales [1]. These time scales

are determined from the various functional requirements

and can be divided into four categories, as seen in Fig-

ure 1(a). These time scales include very short-term (a

few minutes to 30 minutes), short-term (30 minutes to 6

hours), medium-term (6 hours to 1 day) and long-term

(1 day to a week or more) [1],[2], [10]. The time-scale

classification of wind power forecasting models is rel-

atively indistinct, but most agree with the time ranges

listed above. In summary, very short-term forecasting

is mainly used for turbine control, real-time grid opera-

tions and regulation control [2]. Short-term forecasting

is used for load dispatch planning and load intelligent de-

cisions [2]. Medium-term forecasting is used for opera-

tional security in the energy market, energy trading and

online and offline generating decisions [2]. Lastly, long-

term forecasting is used for scheduling maintenance, op-

timal operating costs and operation management [1],[2],

[11]. It is worth noting, as discussed in [2], that wind

power forecasting errors increase with longer time hori-

zons.

3.3 Applied Methodology Classification

Applied methodologies are another way of classifying

wind power forecasting models. As depicted by Fig-

ure 1(b), applied methodologies can be divided into four

categories, physical models, statistical models, machine

learning (ML) models and hybrid models [1], [2].

Physical models, like numerical weather prediction

(NWP) and weather researcher forecasting (WRF), usu-

ally take environmental conditions into consideration

[1]. These factors consist of surface roughness, ter-

rain, wake effect, humidity, pressure and temperature

[2],[12]. All of these variables are then used in a com-

plex mathematical model to predict the wind speed for

that specific area. This wind speed will then be used

to predict the wind power with the turbine wind power

curve. Therefore, it can be said this forecasting method

does not need to be trained with historical data but re-

quires physical data [2]. Studies have shown physical

prediction models to have better performance compared

with traditional statistical models in medium-term and

long-term wind speed prediction, however, this comes

at the cost of being computationally complex, needing

more computational resources [2], [5].

Unlike physical models, historical data is used with sta-

tistical methods to find linear and non-linear relation-

ships between weather and power output. These rela-

tionships are used to make predictions for future power

outputs [1],[2]. Generally, this method is easy to model
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(a) Forecasting Time Horizon Classification (b) Applied Methodologies Classification

Fig. 1. Forecasting Classification

and requires less computational resources than physi-

cal models, but the forecasting error increases with a

larger time horizon [2]. Statistical models can be di-

vided into two main sub-classifications, which are: the

traditional statistical model, like time series forecasting

and ML approaches, like artificial neural networks [2].

Time series forecasting is easier to formulate and the

models have a low computational time, they are, how-

ever, more susceptible to errors when the time series

data is not stationary [14]. In recent years, computer

science advancements have led to the widespread uti-

lization of ML models in wind speed and wind power

forecasting [1]. The main soft computing approaches

include artificial neural networks (ANN) and fuzzy sys-

tems [17]. Additionally, models like support vector ma-

chines (SVM) [15], extreme learning machines (ELM)

[16] and Kalman filters [26] have also been success-

fully implemented. Examples of implemented AANs

include back propagation neural networks (BPNN) [18],

multi-layer perception (MLP) [19], Wavelet neural net-

works (WNN) [18] and the Elman networks [20]. These

MLmodels have attracted considerable attention inwind

speed and wind power forecasting due to their superior

ability to deal with complex non-linear problems. The

ML models tend to show better performance in predict-

ing wind speed and wind power compared to conven-

tional statistical models [1]. Although ML models gen-

erally perform better, their accuracy also depends on ad-

ditional factors like data pre-processing, data structure,

learning method and the connections between input and

output data [2],[22].

When different forecasting methods are combined, for

example, ANNs and fuzzy logic models, then we col-

lectively refer to these as hybrid forecasting models [2].

The goal of these models is to keep the advantages of

each individual model and therefore improve the accu-

racy of the combined prediction [1], [21]. Ensemble

modelling is a more advanced type of hybrid model,

where diverse predictive models are often created by

employing and combiningmultiple algorithms and using

different training data sets [2]. This process of combin-

ing forecasting models does not always guarantee bet-

ter performance, but it has proved to have fewer risks

in most situations. As demonstrated by the sources in

Section 5, there is no universal hybrid solution and the

selection of which individual models to use is problem-

specific.

3.4 Key Factors to Compare Different Methods

Instead of comparing individual model algorithms, the

focus of this review is on comparing methods (or model

classifications) as a whole. To achieve this, studies and

research of individual models and methods, under each

category represented in Figure 1(b), are done to deter-

mine the advantages and disadvantages of each. As

stated by [23], it is also important to note that it is dif-

ficult to measure the performance of models only using

the output plots. Predictive performance can be quanti-

fied with evaluation/statistical metrics [23]. From the

sources, [1] -[2], [8], [9], [24], the following statisti-

cal metrics are commonly used: root mean square er-

ror (RMSE), mean absolute percentage error (MAPE),

mean absolute error (MAE), the coefficient of determi-

nation (R2). Table 1 shows how these metrics would be

calculated during experiments. All the studies listed in

this paragraph agree to the use of the evaluation metrics

and use at least two of them listed in Table 1.

Table 1. Equations for Common Evaluation Metrics

Metric Equation

RMSE

√
1
n

n∑
i=1

(yi − ŷi)2

MAE 1
n

n∑
i=1

|yi − ŷi|

MAPE 1
n

n∑
i=1

∣∣∣yi−ŷi

yi

∣∣∣× 100%

R2 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳi)2

3.5 Method Comparison

Table 2 summarizes a few advantages and disadvantages

of each method. Using the information from the litera-

ture review above, a comparison can be made between
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Table 2. Wind Forecasting Methods Summary

Method Advantages Disadvantages

Physical Forecasting Methods
• Physical methods are usually more ac-

curatewhenmakingmedium-term and

long-term predictions.

• Physical methods are good for tailored

site specific predictions.

• These methods are computationally

complex, needing plenty of computa-

tional resources. This makes them un-

suitable for very short-term and short-

term forecasting.

Traditional Statistical Methods
• Simpler than physical models, there-

fore, better performance for very

short-term and short-term forecasting.

• Flexibility in handling different data

sources.

• Susceptible to errors when the time se-

ries data is not stationary.

• Struggles with non-linear features.

Artificial Intelligence Methods
• These models can handle complex

non-linear problems, whether the rela-

tionships between features are known

or not.

• Adaptability to change with condi-

tions.

• Continuous learning and improve-

ment.

• Susceptible to error if the data process-

ing is not done correctly.

• Could have overfitting problems due

to insufficient amount of data.

Hybrid Forecasting Methods
• Integrating the best features of each

individual model to obtain a better-

performing final model.

• Hybrid models are designed to solve

specific problems, and could, there-

fore, show less promising results if ap-

plied to another situation [25].

the discussed methods for wind power forecasting. A

qualitative comparison is done using the various sources

in the literature review.

4 Model Enhancements

Themodern-day importance of delivering accurate wind

power forecasts has led to most of the recent research

efforts having less regard for computational expense

and more regard for low prediction errors. [2]. Some

of these enhancements have proven effective and are

briefly discussed below.

4.1 Kalman Filtering

The Kalman filter is a group of mathematical formulas

that offers a computationally and recursive method to

estimate the state of a process. The goal of the Kalman

filter is to minimize the mean squared error of the esti-

mation process [2], [27]. The strength of the filter is that

it can support the prediction of past, present and future

states, even when the exact formulation of the prediction

model is unknown [27]. In [28], the author found the

Kalman filter to improve the prediction accuracy when

used with an intelligent hybrid model.

4.2 Data Processing Applications

Preparing the data to improve the accuracy of predic-

tions has become an essential part of wind power fore-

casting (and other forms of forecasting) [22]. These

applications could be split into pre-processing or post-

processing applications. Examples of data processing

applications are decomposition, feature selection, fea-

ture extraction and outlier detection [10].

5 Current Forecasting Time Line

Machine learning and hybrid models have gained more

attention than traditional statistical and physical meth-

ods in recent years. This was determined by evaluating

sources limited to the most recent 5 years. Interestingly,

hybridmodels are discussedmost, asmany sources com-

bine ML approaches with other models to form the hy-

brid models [2], [21], [24]. Deep learning models have

been established to outperform traditional neural net-

works [21]. This is primarily attributed to the increased

computational efficiencies and abilities, readily avail-

able to forecasting practitioners. In Table 3, brief sum-

maries are given of articles containing research on state-

of-the-art models and reviews.
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Table 3. Current Forecasting Models Summary

Source # Method/s Summary

[1] 2021

218

11.446

Deep Neural Networks

(DNN)

This article is a comprehensive review of various deep learning models for each stage of

wind speed and wind power forecasting. It was concluded that for feature extraction, (CNN)

are used to extract deep features, for relationship learning recurrent neural networks (RNN)

are popular, and often include LSTM modules. This article also states that certain hybrid

models, specifically stacking-based andweight-based approaches, could provide better fore-

casting performance by taking advantage of different DNN properties.

[22] 2018

302

11.446

Artificial Neural Net-

work (ANN)

ANNs have proven to be effective for predicting wind speed and wind power over short

intervals, but the accuracy decreases with longer time intervals. In this article, the author

also highlights the ability of ANNs to cope with different data sets, making them robust and

often preferred for control tasks, as they are more efficient than PID controllers.

[29] 2021

143

8.634

Deep learning and

Gated-recurrent Neural

Network (GRNN)

This article discusses the implementation of LSTM andGRU deep learning neural networks.

The forecasting models were developed independently of wind turbine properties, ensuring

that the prediction models could be used for supplementary wind farms/turbines. The au-

thors then conclude that the GRU neural network outperforms the LSTM neural network in

accuracy, whilst having a shorter training time.

[30] 2021

10

7.985

Deep Learning Various deep learning-based models are introduced in this article, namely, CNN, RNN and

restricted Boltzmann machine (RBM). Many of these models were also combined with

LSTM modules and gated recurrent units (GRU) to form hybrid models as in [1]. This

article also concludes that RNNs are better at extracting dependencies and CNNs are better

at extracting correlation between multiple time series.

[37] 2020

20

*

Neural Network, SVM A comparison between neural networks, SVM, k Nearest Neighbour (kNN) and Random

Forest were in this paper. The author highlighted that Neural networks and SVM were sus-

ceptible to a high computational time when there were irrelevant input features. It was de-

termined that kNN has low computation time and low error with few features, but struggled

with predicting outliers. Alternatively, Random Forest had a high error with few features

and low error with many features. Random forests could ignore irrelevant input data and

predict outliers. It was concluded that the models have different strengths and weaknesses.

The paper also discusses the advantages of having an accurate prediction system for the TSO

and the services the wind farm could provide.

[24] 2020

14

4.672

Hybrid Neurofuzzy In this article, a comparison of two adaptive neurofuzzy interference system (ANFIS) mod-

els was done. The models were hybridised with the genetic algorithm (GA) and particle

swarm optimization (PSO). The research concluded that the PSO-ANFIS model had less

prediction error and compiling time than the GA-ANFIS model, making it the preferred

model for short-term predictions.

[25] 2019

65

10.16

Hybrid model with

Multi-objective Moth-

flame Optimisation

(MOMFO) Algorithm

A novel hybrid model using the MOMFO algorithm is developed and tested in the article.

Multiple tests were conducted on this hybrid model and determined that it has a very high

efficiency. Furthermore, it was determined that the model outperforms benchmark models,

but the model is also a useful predictor for planning and managing operations. Due to the

models’ accuracy and robustness, the authors conclude that the model could also be used in

other prediction fields, like oil price predictions.

[31] 2018

136

10.16

Hybrid model with Em-

pirical Mode Decompo-

sition (EMD)

This article proposes a hybrid model based on EMD with non-iterative kernel ridge regres-

sion (KRR) for short-term wind speed and wind power prediction. The study found wavelet

KRR (EMD-WKRR) to exhibit superior prediction accuracy but had high execution time.

Therefore, a reduced EMD-RWKRR model was also implemented, having a lower execu-

tion time and only a very small loss in accuracy.

[32] 2021

21

3.746

ML-based Hybrid mod-

els

Artificial Intelligence hybrid model applications are presented in this review article. It high-

lights different techniques, implementation factors, issues and constraints with these ap-

proaches. The authors concluded that certain models perform better at different time hori-

zons. The Jaya algorithm with a SVM for short-term forecasting, the Type-2 Fuzzy Neural

Network (T2FNN) for medium-term forecasts and LSTMwith RNN for long-term forecasts

were some of the best-performing models.

[38] 2019

75

8.634

Hybrid Model based on

BMA-EL

This article proposes a hybrid wind power forecasting model based on Bayesian model aver-

aging and Ensemble learning (BMA-EL). According to the test conducted, the BMA-EL ap-

proach reduced the uncertainty of the forecasting results of a single model. It was concluded

that this proposed approach increases the reliability and precision of wind power forecasting

under different meteorological conditions compared to other literature approaches.

1 The order of # is: Date, citations and impact factor
2 A * denotes a conference paper.
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In [1] and [30], both studies concluded that different

deep-learning neural networks are better at different

tasks, which is why hybrid models are increasing in

popularity. Recurrent neural networks (RNNs) were

commonly used for extracting information regarding re-

lationship learning, and convolutional neural networks

(CNNs) are found to be more capable of extracting deep

features. Hybrid models can, therefore, retain the ad-

vantages of each individual model, producing a more

accurate combined model. A common theme revealed

from multiple sources in Table 3, [1], [29], [30], [32]

highlights that hybrid models implementing long short-

term memory (LSTM) often have better prediction per-

formance and efficiency. This could be confirmed in

[33] - [35]. Most wind power forecasting models are

developed for onshore wind farms, but as demonstrated

in [6], offshore wind forecasting models are also imple-

mented progressively.

The improvement in forecasting model accuracies pro-

vides more certainty to grid operators, which has al-

lowed for the increased integration of RE sources into

the electrical grid. These forecasts greatly aid in pro-

viding ancillary services to the electrical grid from re-

newable energy sources. Prediction horizons for ancil-

lary services range from very short-term for frequency

regulation, to medium-term for supplemental operating

reserves [36]. As stated in the literature in Section 3, a

larger forecasting horizon often results in a larger pre-

diction error, therefore, future work can still be done to

improve forecasting with longer time horizons. Improv-

ing this could aid with the provision of certain ancillary

services such as supplemental operating reserves.

6 Future trends in Wind Power Forecasting

• As stated in [6], the amount of offshore wind farms

are increasing yearly. These wind farms operate

in vastly different climatic conditions than onshore

wind farms and most prediction models are devel-

oped based on onshore wind farm data. It is recom-

mended to develop models aimed at improving the

accuracy of offshore wind farms as well, specifi-

cally improving feature selection in those models.

This sentiment is also shared by [2].

• Controlling data imbalances (skewed class propor-

tions) and rare event forecasting is another research

domain with limited existing literature. Forecast-

ing rare events from a time series data set would be

very valuable for protecting the power system.

• A common problem for wind power forecasting is

the decrease in performancewith an increase in pre-

diction horizon. Further development of accurate

long-term forecasting (Figure 1(a)) could greatly

aid in the provision of certain ancillary services and

maintenance planning.

• The accuracy and robustness of wind power pre-

diction with ML-based hybrid modes can be fur-

ther enhanced with online wind measurement

databases. The online wind measurement data

could be used with cloud computing platforms (Mi-

crosoft Azure, Google Cloud and Amazon Web

Services for example) to trainML/hybrid models in

real-time, subsequently increasing forecasting ac-

curacy.

7 Conclusion

With a specific focus on the most recent 5 years of pub-

lished research, A state-of-the-art literature review on

wind power forecasting has been presented. The clas-

sification and evaluation of new wind power forecast-

ing models have been reviewed, together with common

statistical evaluation metrics, which are predominant to-

day. Furthermore, accurate wind power forecasting will

reduce the financial and technical risks associated with

the uncertainties of wind power. Collectively, it was

determined that ML and hybrid models were prominent

in most studies, given the increase in computing power

and efficiency. From this, it was also apparent that re-

searchers have gravitated towards the implementation

of hybrid models, with LSTM models identified as a

good combination with other models, due to its superior

accuracy and low computational time. This literature

recognised that larger time horizons often result in larger

forecasting errors, therefore, some widely accepted fu-

ture recommendations on wind power forecasting were

made.

This paper determines that by implementing and im-

proving wind power forecasting, easier provision of an-

cillary services can take place ensuring a stable grid and

wide adoption of wind energy globally. There is, how-

ever, still more research to be done to aid the full integra-

tion of wind energy into the electrical grid. Therefore,

this paper is beneficial towards researchers, policymak-

ers, decision-makers and operational engineers.
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Abstract: This paper introduces an approach to enhancing the 
allocation of wind resources by leveraging unsupervised 
machine learning techniques. The central objective is to optimize 
the distribution of wind resources across geographic sites, 
thereby maximizing both generation profiles and overall system 
stability. Two distinct clustering methodologies are employed, 
namely temporal and statistical feature clustering. These 
strategies effectively cluster regions within the coastal region of 
South Africa and unveil the unique advantages of each approach. 

Both clustering techniques harness the power of the widely 
utilized k-means algorithm in unsupervised learning. To 
comprehensively assess the characteristics of the temporal and 
statistical clusters, a modelling framework utilizing the Weibull 
distribution is implemented. This approach accounts for seasonal 
fluctuations and considers wind speed intervals that correspond 
to different temporal periods. By integrating the Weibull 
distribution, the modelling technique significantly enhances the 
accuracy of representing the characteristics of the wind resource 
potential. 

Furthermore, this study incorporates the clustered data as inputs 
into an optimization model. This model serves as a guiding tool 
for informed decision-making regarding the strategic placement 
of wind power plants along South Africa's coastline. The 
proposed allocation methodology is adaptable, as it can easily 
incorporate additional critical variables such as wind direction, 
solar power, and green hydrogen. 

Keywords: wind resource allocation; clustering; statistical 
feature extraction; Weibull distribution; optimisation 

1. Introduction

Wind power is rapidly growing as a global Renewable Energy 
(RE) source [1]. Wind power energy is a popular RE source, 
where the efficiency of the RE generation plant is heavily 
influenced by its location [1]. In South Africa, where wind speed 
varies seasonally and geographically, developing an optimal 
method for placing wind resources can be highly beneficial. 
Evaluating the wind speed profile at each potential site is crucial 

for resource siting [2]. 

The South African power grid faces energy supply challenges 
exacerbated by rapid economic growth and increased demand 
[3]. Load-shedding measures have been introduced but haven't 
effectively solved the issue. To address this, South Africa is 
turning to Renewable Energy Sources (RES) like solar, wind, 
biomass, and hydropower [3]. 

Urgent investigation into clean, sustainable, and cost-effective 
energy generation methods is needed to meet electricity demand 
and address grid challenges. Wind power is gaining popularity, 
necessitating methods for planning wind power integration in 
South Africa. Thus, this paper proposes a method for allocating 
wind resources. 

The study compares two clustering methodologies for wind 
resources. The first is temporal clustering, applying a machine-
learning algorithm to raw time-series data with a Euclidean 
distance metric. The second method is statistical feature 
clustering, extracting statistical features from time series data 
before applying a machine learning algorithm. By comparing 
these approaches using the Weibull distribution, the study 
identifies the most efficient one. The chosen method's clusters 
are then used in an optimization model to maximize stability and 
wind speed potential, establishing optimal and robust wind farm 
locations in South Africa. 

2. Methodology

2.1. Resource dataset and study region 
This study uses data from the Wind Atlas for South Africa 
(WASA), encompassing wind speed and direction information 
from 527 locations spanning 12 years. For this study, data from 
2012 at a hub height of 100m is used, given the recurring nature 
in the annual wind patterns. The resource has spatial resolution 
of 25 km² and a temporal resolution of 1 hour. 

The coastal region of South Africa is selected as the focus area 
for the study due to the high wind speeds experienced at the 
coast. Fig. 1 depicts the study region, where each grid cell is 
represented by an averaged time-series wind speed dataset. 
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Fig. 1. Geographic coastal locations in South Africa. 

2.2. Machine learning algorithms 
Clustering algorithms are unsupervised machine-learning 
techniques used to identify distinct groups or clusters within 
datasets that share similar attributes. In the context of wind 
resource allocation, these algorithms play a crucial role in 
clustering geographical locations based on common wind speed 
traits and other relevant factors. 

One widely adopted clustering technique is the k-means 
clustering algorithm, which divides a dataset into a 
predetermined number of clusters. It operates by iteratively 
assigning each data point to the cluster with the nearest centroid 
and subsequently updating cluster centroids based on the newly 
assigned data. K-means is efficient for large datasets but is less 
suited for irregularly shaped data distributions or clusters of 
varying sizes [4]. 

The primary goal of the k-means algorithm is to minimize the 
distance between data points and the respective cluster centroids. 
This is defined as reducing the intra-cluster variance, which can 
be achieved by employing the squared error function 

𝐽𝐽 =  ∑ ∑ ∥ 𝑥𝑥𝑖𝑖
(𝑗𝑗) − 𝑐𝑐𝑗𝑗 ∥2𝑁𝑁

𝑖𝑖=1
𝐾𝐾
𝑗𝑗=1 , (1) 

where J is the objective function of the cluster centroid, K is the 
number of clusters, N is the number of data points, cj is the cluster 
centroid, and xi

(j) is a data point in the respective cluster. 

Determining the optimal number of clusters is a challenging 
aspect of k-means clustering. This challenge is commonly 
tackled through methods like silhouette analysis and the elbow 
method. Silhouette analysis evaluates the cohesion and 
separation of clusters, yielding a score ranging from -1 to 1. 
Higher scores indicate more effective clustering. A score of 0 
implies data points lie on or near the boundary of adjacent 
clusters. Conversely, negative values suggest potential 
misassignment of data points. The Average Silhouette Width, 

ASW, score is defined as [5] 

𝐴𝐴𝐴𝐴𝐴𝐴 =  1
𝑁𝑁
∑ ∑

(𝑏𝑏𝑥𝑥𝑖𝑖−𝑎𝑎𝑥𝑥𝑖𝑖)

max (𝑏𝑏𝑥𝑥𝑖𝑖 ,𝑎𝑎𝑥𝑥𝑖𝑖)
𝑥𝑥𝑖𝑖∈𝐶𝐶𝑗𝑗

𝐾𝐾
𝑗𝑗=1 , (2) 

where 𝑎𝑎𝑥𝑥𝑖𝑖 and 𝑏𝑏𝑥𝑥𝑖𝑖 correspondingly denote the average intra-
cluster and the smallest inter-cluster distances for data point 𝑥𝑥𝑖𝑖 
within cluster 𝐶𝐶𝑗𝑗. N and K denote the total number of data points 
and clusters, respectively.  

The elbow method is another widely used approach for 
determining the optimal number of clusters. In this method, the 
Within-cluster Sum of Squares (WSS) is plotted against the 
number of clusters. This graphical representation helps pinpoint 
the optimal cluster number by identifying the point on the plot 
where the curve starts to level off or bend, resembling an elbow 
shape [5]. 

2.3. Distance metrics 
Clustering algorithms rely on a distance metric to quantify the 
similarity between data points. The Euclidean distance is a 
widely used metric in data mining [6]. However, it's sensitive to 
time shifts and lacks invariance. Given the presence of invariants 
in the temporal data used in this study, an alternative distance 
metric is explored. 

The Dynamic Time Warping (DTW) algorithm, extensively 
employed across various domains, optimizes alignments 
between time-dependent sequences by non-linearly warping 
them for optimal matching [7]. In this study, DTW is combined 
with the k-means algorithm to analyse distinctive wind speed 
patterns. DTW effectively accommodates time-related 
deformations and varying speeds inherent in time-dependent 
variables. Given the dimensionality of the wind dataset, DTW is 
adopted to compute the shortest distance between two time-
series measurements. 

2.4. Weibull distribution 
The Weibull Probability Density Function (PDF) is a valuable 
modelling tool for wind speed distribution.  It offers a versatile 
framework to characterise the probability of specific wind 
speeds occurring in a cluster or region [8]. The Weibull PDF 
encompasses two main variants: the three-parameter and two-
parameter PDFs. Equation (3) represents the three-parameter 
PDF expression, where β is the shape parameter, α is the scale 
parameter, and γ is the location parameter.  

𝑓𝑓(𝑥𝑥) =  β
α

(𝑥𝑥−γ
α

)β−1𝑒𝑒−(𝑥𝑥−γα )β. (3) 

By setting the location parameter equal to 0, (3) can be 
condensed to the two-parameter Weibull distribution function.  

2.5. Optimisation 
Optimization in this study involves employing mathematical and 
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computational techniques to identify the most favourable choice 
among a set of alternatives based on a specific criterion. There 
are three key elements to an optimization problem. Firstly, an 
objective function is defined, outlining the goal the optimization 
model aims to attain. The next step involves setting up 
constraints, representing the real-world limitations and 
prerequisites that the solution must adhere to. Lastly, the 
optimization process revolves around decision variables, which 
stand for the parameters or entities for which values are sought 
and act as the output of the optimization model. Considering all 
potential outcomes is crucial to ensure the ultimate outcome is 
optimal. 

In this study, an optimization function is developed to determine 
optimal weights that simultaneously minimize risk (standard 
deviation) and maximize portfolio return. The portfolio consists 
of all of the wind clusters, where the optimal weights define the 
combination ratio of the summated wind profiles. Therefore, the 
optimised wind profile is obtained by multiplying each cluster's 
wind profile by its corresponding weight. The final wind profile 
is computed as the summation of all the adjusted weighted wind 
profiles. Equation (4) illustrates the derivation of this function, 
where achieving minimum variance involves minimizing the 
standard deviation of the final wind profile. 

𝐴𝐴𝑊𝑊 =  ∑ 𝐶𝐶𝑘𝑘  × 𝐴𝐴𝑘𝑘
𝐾𝐾
𝑘𝑘=1   (4) 

Consider K as the number of clusters, n as the cluster number, Ck 
as the cluster profile, and Wk as the optimised weight vector. 

The Sequential Least Squares Programming Optimizer (SLSQP) 
algorithm is utilised in this study because the function derived in 
(4) is nonlinear and has constraints, making SLSQP an ideal
algorithm for this application. SLSQP can minimise a function
that has several variables with any combination of bounds,
equality, and inequality constraints [9], [10], [11].

3. Implementation and Results

3.1. Overview 
Fig. 2 illustrates the clustering methodology employed in this 
study. Two methods will be compared in this section, temporal 
clustering and statistical feature clustering. The wind resource 
dataset for the temporal clustering is the raw wind data, while the 
statistical features for wind time-series data are extracted to be 
used in the statistical feature clustering. This statistical dataset is 
organised into seasons and split into morning (00:00 – 12:00) 
and evening (12:00 – 00:00) hours. Statistical features, namely 
the mean, standard deviation, and skewness, are then extracted 
to create a new dataset that reveals underlying patterns. In total, 
24 features are extracted for each wind location, specifically the 
3 features, mean, standard deviation, and skewness, calculated 
for the morning period and also for the evening period, repeated 

for each of the 4 seasons. This summates to a time series dataset 
that has 6 representative features per season and summates to a 
total of 24 features representative of each location. Both methods 
employ the k-means algorithm and the DTW distance metric is 
chosen to be used for temporal clustering method. 

Fig. 2. The clustering methodology. 

3.2. Wind resource clustering and validation 
To implement the k-means clustering algorithm for classifying 
527 sites along South Africa's coastal region, it is crucial to pre-
select the optimal number of clusters. The elbow method and 
silhouette method are two commonly employed techniques to 
determine the ideal number of clusters. Fig. 3 and 4 showcase 
the elbow plot for the temporal and statistical methods, 
respectively, between 2 and 14 clusters. Additionally, the 
execution time for each cluster number is included in the figures. 
As noted previously, the temporal method utilizes the DTW 
distance metric, while the statistical method utilizes the 
Euclidean distance metric.  
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Fig. 3. Within-cluster Sum of Squares and fit time plotted 
against the cluster number for the temporal dataset. 

Fig. 4. Within-cluster Sum of Squares and fit time plotted 
against the cluster number for the statistical dataset. 

The figures show that a slight change in behaviour is observed 
between 5 and 9 clusters for both methods. However, it is 
difficult to identify the optimal number of clusters since both 
plots are relatively smooth. For this reason, the silhouette scores 
for both methods are evaluated.  

The average silhouette widths are calculated for clusters ranging 
from 5 to 9 to determine the optimal number of clusters. Table 1 
showcases the silhouette scores for each cluster number for the 
temporal and statistical datasets. Based on these results, it was 
determined that 5 clusters are the most effective number for both 
datasets. The statistical ASW values also seem significantly 
higher than the temporal clusters, indicating a lower probability 
of locations being clustered into the wrong region. The temporal 
ASW values are all near 0, indicating that data points are close 
to the clustering decision boundary. 

Table 1. Average silhouette scores for the temporal and 
statistical clusters. 

Cluster number ASW - Temporal ASW - Statistical 

5 0.13151 0.632 

6 0.12346 0.554 

7 0.12583 0.545 

8 0.10809 0.375 

9 0.12382 0.363 

The clustering results are examined after determining the 
optimal number of clusters for both datasets. The cluster 
distribution obtained by applying k-means to the temporal and 
statistical datasets is shown in Fig. 5 and 6, respectively.  

Fig. 5. Temporal cluster distribution sites of South Africa. 

Fig. 6. Statistical cluster distribution sites of South Africa. 

3.3. Comparison of the temporal and statistical clusters  
This section compares and evaluates the outcomes of the two 
clustering methodologies to determine the most efficient and 
effective approach. Fig, 5 and 6 depict the clusters for both 
datasets obtained and mapped on a South African map. Fig. 7 
and 8, depict these clusters superimposed on a heat map 
depicting South Africa's elevation. The cluster formations in 
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Fig. 7 exhibit a low degree of granularity and dispersion in 
relation to the underlying elevation. The cluster distribution 
generally corresponds to the geographic regions, with nearby 
locations clustered together.  

Compared to the results derived for the temporal clusters, the 
statistical clusters depicted in Fig. 8 exhibit greater granularity 
and dispersion. Cluster 2 comprises the greatest number of sites, 
157 in total, and each site is effectively clustered in relation to 
elevation. Few locations in cluster 1 are situated inland, with 
most of the sites located along the coast. This dispersion can also 
be observed in clusters 2, 3, and 5. 

Fig. 7. Temporal cluster distribution overlayed with an 
elevation heatmap. 

Fig. 8. Statistical cluster distribution overlayed with an 
elevation heatmap. 

Upon comparing the clustering results achieved through both 
methodologies, it is observed that the two methodologies yield 
distinct outcomes regarding the diversity and granularity of the 
clusters formed. By employing (3), the Weibull distributions of 
the established wind speed clusters are constructed to evaluate 
the efficacy of both methods further. This is also done to 
determine the distinctions between the two methodologies and to 
establish which method would provide the best input for 
optimisation methods. 

Fig. 9 and 10 depict the results of the Weibull distribution 
analysis corresponding to each cluster for the temporal and 
statistical feature-based methodologies, respectively. As 
indicated by the statistical clusters' distribution, a more uniform 
wind speed profile is observed within each cluster. In contrast, 
the distribution pattern of wind speed for temporal clusters 
appears to be shorter and with more spread. This indicates that 
the wind speeds within these clusters are significantly more 
variable. These results confirm that temporal clusters emphasise 
transient variations, whereas statistical clusters highlight wind 
profile characteristics over a longer period of time. 

Fig. 9. Weibull distributions for the temporal clusters. 

Fig. 10. Weibull distributions for the statistical clusters. 

The analyses reveal additional distinctions between the distinct 
categories. The statistical clustering results reveal that the wind 
speed profiles associated with each cluster have notably higher 
means and lower standard deviations.  

The comparative evaluation reveals clear advantages in favour 
of the statistical clustering method over its temporal counterpart. 
This choice not only significantly reduces time complexity but 
also ensures accurate outcomes in relation to elevation 
considerations. Statistical clusters demonstrate a heightened 
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level of certainty and consistently higher wind speed means 
compared to temporal clusters. Consequently, these robust 
statistical cluster results will be employed as the principal input 
for optimisation, driven by their reliability and potential to refine 
wind power plant placement strategies. 

3.4. Optimisation of wind resource statistical clusters 
Given the inherent volatility of wind energy resources, 
achieving optimal allocation within the necessary constraints is 
imperative. This section describes developing an optimal wind 
resource allocation model using wind speed data. Utilising a 
minimum optimisation algorithm, statistical cluster regions are 
utilised to validate the approach. 

The weights are initialised randomly, and the optimisation 
process begins by minimising the nonlinear function described 
in (4). The model includes a constraint term to ensure that the 
cumulative sum of the weights equals 1, thereby ensuring 
proportional allocation. The second optimisation constraint sets 
the mean wind speed to the maximum average wind speed seen 
over all cluster formations. The standard deviation of the wind 
resource highlights the variation of wind speed values from the 
mean within each cluster's dataset. Therefore, lower standard 
deviations for a set mean wind speed correlate with greater 
stability and consistency. 

3.4.1. Optimization results 
The average wind speed of the resultant weighted profile is set, 
as an optimisation constraint, to the average wind speed of the 
cluster with the highest average wind speed, namely cluster 4 
with an average wind speed of 7.964 m/s. The wind speed values 
are depicted in Fig. 11.  

Table 2 presents a comprehensive breakdown of the investment 
allocations achieved through optimisation. This table illuminates 
how resources are apportioned across various cluster regions. 
Notably, clusters 1 and 5 emerge as recipients of the largest 
allocation, while cluster 3 receives the comparatively smaller 
allocation. 

This distribution strategy correlates directly with the insights 
drawn from the Weibull distributions for the statistical feature-
based clusters, as depicted in Fig. 10. These distributions 
distinctly showcase that that cluster 3's wind speed values are 
mainly distributed for low wind speeds compared to cluster 5, 
which has a high distribution for high wind speeds. Thus, it is 
demonstrated that using wind speed as a constraint lead to a high 
weight allocation in cluster 5 than cluster 3. In contrast, cluster 
4's Weibull distribution reveals a lower probability density, 
indicating a lower degree of certainty and a higher degree of 
variability. 

Table 2. Weight allocations for optimised wind speed 
profile. 

Cluster number Weight 

1 0.2363 

2 0.1858 

3 0.1712 

4 0.2035 

5 0.3441 

Fig. 11 displays a bar chart illustrating the average wind speeds 
within individual clusters. The set average wind speed for the 
optimised solution is 7.964 m/s. Of note, clusters 1 and 4 most 
resemble the optimal value.  

Fig. 12 presents a bar chart that contrasts the standard deviation 
of each cluster with that of the optimized solution. Notably, the 
optimized solution boasts the lowest standard deviation of 2.540, 
significantly outperforming the standard deviations observed in 
individual clusters. This disparity emphasises the optimized 
solution's exceptional stability, indicating reduced risk. 
Consequently, clusters 3 and 5 emerge as the most efficient and 
reliable locations.  

Fig. 11. Bar chart of the mean winds speeds for each 
cluster and the wind speed for the optimised wind profile. 

Fig. 12. Bar chart of the standard deviation for each cluster 
and the standard deviation of the optimised wind profile.   
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4. Conclusion

Optimising wind resource placement is crucial for mitigating 
economic and technical uncertainties stemming from the 
inherent variability of wind energy generation. This study 
employed a temporal clustering methodology and a statistical 
feature-based clustering approach to uncover meaningful 
clusters within the South African region. The statistical feature-
based clustering method yielded distinct clusters, where 
geospatial sites within each cluster shared consistent attributes 
and elevation characteristics. 

A versatile optimisation model was employed to allocate 
resources across the cluster regions by utilising the average wind 
speed profiles of these clusters as inputs. The findings of this 
research underscore the potential for establishing an effective 
distribution of geographical sites along the South African 
coastline for optimal wind resource facility deployment. 
Consequently, this proposed strategy empowers investors to 
make well-informed decisions regarding the allocation of wind 
resources, optimising returns. 

While this study was based on a one-year dataset, future 
implementations stand to benefit from the vast influx of data 
available. Using k-means, a highly efficient machine learning 
cluster algorithm, effectively mitigated extended execution 
times. This method proves especially adept at handling extensive 
datasets with lengthy timeframes, making it well-suited for 
diverse applications. 

Furthermore, the optimised solution demonstrated exceptional 
performance, characterised by a notably reduced standard 
deviation for a set mean wind speed. Subsequent research could 
leverage the proposed methodology by translating wind speed 
into wind power, thereby incorporating it as an input for the 
optimisation algorithm. Advanced optimisation approaches, 
such as mean-variance portfolio optimisation, can also be used, 
where the performance can be compared to that of the generic 
optimisation used in this study. Moreover, the versatility of this 
approach lends itself to estimating the ideal distribution of solar 
resources and storage facilities, encompassing batteries and 
green hydrogen. 
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Abstract: The successful integration of large amounts of wind 
energy onto the South African network depends on reducing the 
uncertainties inherent in wind generation. Towards this goal, as 
of Bid Window 5 of South Africa’s (SA’s) Renewable Energy 
Independent Power Producer Procurement Programme 
independent, power producers are subjected to penalty costs for 
wind generation forecast errors. This paper explores the financial 
feasibility of adding a lithium-ion (li-ion) Battery Energy 
Storage System (BESS) to a wind farm to alleviate the wind 
forecast error penalty costs in SA.  The hypothesis investigated 
in this study is that for a wind farm, the integration and operation 
of a BESS behind the meter can sufficiently alleviate the wind 
energy forecast errors and associated penalties to make such an 
integration financially feasible. An Excel-based simulation 
model that considers revenue, forecast penalties and the 
technical and financial performance of a li-ion BESS is 
developed. In evaluating the feasibility of the BESS integration, 
the net present value and internal rate of return metrics are 
employed. The model was tested through a case study using the 
Sere wind farm in SA. Feasibility was tested as a function of a 
number of parameters: BESS optimal size and efficiency; 
forecast error magnitude; BESS charging strategy; project 
discount rate; BESS replacement costs and wind farm size. For 
the case study, it was found that it is currently not financially 
feasible to install a li-ion BESS next to a wind farm for the sole 
purpose of wind energy forecast error alleviation in SA. The 
results of the sensitivity analysis indicate at what point such a 
BESS integration might become feasible given changes to input 
parameters. The outcome of this study is anticipated to be 
beneficial to wind farm owners and investors in the energy 
storage and wind energy domains seeking to alleviate costs 
associated with forecast errors. 

Keywords: wind energy, forecast error, penalty cost, BESS. 

1. Introduction

The share of electricity being generated from wind energy

resources is the fastest growing within the electricity sector. 
With the increased wind energy penetration, wind energy 
forecasting is expected to be vital to modern power system 
operations [1], [2], [3]. However, there may exist a significant 
level of discrepancy between the wind energy forecasted and 
actual generation, referred to as a wind energy forecast error. 
These errors are influenced by many factors, including the 
accuracy of the weather forecast, the accuracy of the assumed 
power curve, wind speed, wind direction, forecasting approaches 
and model factors [4], [5].  

With South Africa’s Bid Window (BW) 5 of the Renewable 
Independent Power Producer Programme (REIPPPP), a forecast 
penalty cost due to inaccurate forecast has been introduced. 
Though the exact details of such penalty regimes are not, as yet, 
publicly available, it has been inferred that the hourly penalty 
cost in South Africa (SA) can be as high as 10% of the total 
hourly revenue [6]. Therefore these errors in wind power 
forecasting may lead to significant penalty costs that the wind 
farm is subjected to pay and can represent a substantial economic 
loss [7].  As such, forecast error penalty costs may pose a 
significant project financing risk and need to be well-understood 
by wind farm developers and operators [8]–[10]. 

Minimizing forecast errors results in minimized forecast penalty 
costs, which translates to profit maximization for wind farm 
owners [11]. The integration of a battery energy storage system 
(BESS) has the ability to compensate for differences between 
forecasted and actual wind energy generation. [12]–[18] 
assessed various methods and approaches in which a BESS can 
be employed to alleviate wind energy forecast errors in different 
energy markets and found that the forecast errors can be 
alleviated. Due to fast response, long calendar and cycle lifetime 
and high round trip efficiency, li-ion BESS is currently an 
attractive storage technology for this application [19], [20]. The 
financial performance and techno-economic studies for li-ion 
BESS carried out by [19], [21],  [22] in various markets found 
that the integration of li-ion BESS for the sole purpose of wind 
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energy forecast error alleviation in the existing markets was 
unprofitable, unless the BESS also provides other profitable grid 
services. 

This study aims to investigate the hypothesis that, for a wind 
farm in South Africa, the integration and operation of a BESS 
behind the meter can sufficiently alleviate the wind energy 
forecast errors and associated penalties to make such an 
integration financially feasible. To test this hypothesis, four 
operational strategies of the BESS are proposed, and various 
sensitivity analyses are performed. This paper uses the net 
present value (NPV) and internal rate of return (IRR) to evaluate 
the feasibility of integrating a li-ion BESS into a wind farm to 
alleviate forecast errors in SA.  

The outline of this article is as follows: Section 2 provides the 
methodology and discusses the development of the simulation 
model. Section 3 introduces the description of the case studies 
used to test the developed approach. Section 4 presents the 
simulation results and discussions. Section 5 summarizes the 
findings and concludes the paper. 

2. Methodology

2.1. Battery Energy Storage System Technical Modelling  
The BESS will be used for storing the excess energy available 
due to under-forecasting (more energy produced than was 
forecasted) and will be discharged in instances of over-
forecasting. A well-known SA assembled li-ion battery’s 
specification and costing were used for this study due to its 
availability in the local market.  

In terms of generating a technical model, the equation below was 
defined for charging and discharging of the BESS: 

𝑒	(𝑡) =
𝐸!(𝑡) −	𝐸"(𝑡)

𝐸"(𝑡)
(1) 

where 𝑒	(𝑡) is the forecast error at any given hour 𝑡, 𝐸!(𝑡) is the 
actual hourly energy generated and 𝐸"(𝑡) is the hourly energy 
forecasted. The BESS charging and discharging is governed by 
the following constrains: 

Charging: 

𝐸#(𝑡 + 1) = 	𝐸#(𝑡 − 1) +	𝐸#(𝑡) ∗ 0.5 ∗ 𝜂$%&& (2) 

Discharging: 

𝐸#(𝑡 + 1) = 	𝐸#(𝑡 − 1) −	𝐸#(𝑡) ∗ 0.5 ∗ 𝜂$%&& (3) 

where 𝐸#(𝑡) is the energy charged or discharged at any given 
time step, t defined as 1 hour, 𝐸#(𝑡 − 1) is the energy charged or 
discharged at any given time (𝑡 − 1) and 𝜂$%&& is the BESS 
roundtrip efficiency (assumed to have equal efficiency losses 
when charging as when discharging). 

An important element affecting the BESS investment costs is its 
cycle life [23]. An iterative formula was incorporated into the 
model to track the BESS cycle life. This allowed the prediction 
of the lifespan of the BESS employed.  This is determined 
through extrapolation of the charging and discharging cycles that 
the BESS is likely to employ throughout its lifecycle based on 
the historic generation and forecast error data. The equation 
below represents the iterative formula 

𝐶#'( 	= 	𝐶# 	− 2
𝑆𝑂𝐶#'( −	𝑆𝑂𝐶#
2 ∗ 𝐸$%&&

2 (4) 

where 𝐶#'(	 and 𝐶# are the current and previous remaining 
number of cycles, respectively. 𝑆𝑂𝐶#'( and 𝑆𝑂𝐶# are the current 
and previous period’s BESS state of charge (SOC, in kWh). 
𝐸$%&& is the BESS usable capacity which is multiplied by 2 to 
cater for charging and discharging. This equation was deduced 
from similar studies by [24] and [25] to evaluate the battery life 
and indicate the performance of BESS by using the cycles. 

2.2. Battery Energy Storage System Operation 
Strategies 

There are multiple strategies in which the BESS can be operated 
that could minimize forecasting errors to various degrees of 
success. This paper proposes four SOC optimization strategies 
whose results were compared to the base case, where no BESS 
is integrated. These are based on setting constraints on the SOC 
of the BESS and how it responds to forecast errors. The objective 
of exploring these operational strategies was to reduce the 
forecast penalty costs and in turn maximize revenues.  

In strategy 1, the BESS charges or discharge at any period of 
over -or under generation without maintaining a SOC level. 
Strategy 2 seeks to avoid charging and discharging when no 
forecast penalty was imposed, hence the constraint was on the 
BESS to only charge and discharge when the wind farm is 
subjected to a forecast penalty (i.e., |𝑒	(𝑡)| ≥ 10%). In strategy 3, 
the BESS seeks to maintain a SOC level where there are no 
penalties imposed, in preparation for periods where there are 
penalties to be alleviated. Strategy 4 is an extension of strategy 
3 with different SOC target levels selected to be maintained for 
each of the four seasons. The SOC levels were selected based on 
the forecast error distribution of the one-year historic data 
provided and for strategy 4 were selected based on the forecast 
error distributions for each of the four seasons.  

2.3. Financial Modelling 
The financial modelling accounts for all the costs incurred over 
the entire life of the projects.  

To determine the penalty costs for inaccurate forecasting in BW 
5, the penalty factors as shown in Table 1 were determined based 
on [6].  
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Table 1. Forecast Error Penalty Schedule 

Forecast errors (%) Penalty factor (w) 

< 10 0 

10 – 20 0.025 

20 – 30 0.05 

> 30 0.1 

The hourly penalty cost incurred due to the forecast error 
(𝐶)*+!,-.) was calculated as: 

𝐶)*+!,-.	 	= 	𝑤 ∗	𝐸!(𝑡) ∗ 	𝐶0*+ (5) 

where 𝑤 is the penalty factor with respect to the forecast error,  
𝐸!(𝑡) is the actual wind energy generation (MWh) and 𝐶0*+  is 
the feed-in tariff paid to the generator (R/ MWh). This equation 
was used in a similar study by [26] to determine the penalty costs 
for deviations. 

To accurately evaluate and compare various scenarios of the 
project operation, a number of financial parameters were 
considered. The annual operational cost can be referred to as the 
expenses incurred to operating the part of the windfarm relating 
to the integrated BESS and considers the annual Operational 
Expenditure (𝑂𝑝𝐸𝑥$%&&) and the cost of efficiency losses of the 
BESS (𝐶1!"## ). It can be calculated as 

𝐴𝑛𝑛𝑢𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑐𝑜𝑠𝑡	

= 	𝑂𝑝𝐸𝑥$%&& + D 𝐶1!"##

234(

-5(

		

(6) 

The hourly cost due to the efficiency losses of the BESS can be 
calculated as:  

𝐶1!"## = (	𝑆𝑂𝐶#'( −	𝑆𝑂𝐶#) ∗ E
1 − 𝜂$%&&

2 F ∗	𝐶0*+ (7) 

The annual savings can be calculated as 

𝐴𝑛𝑛𝑢𝑎𝑙	𝑆𝑎𝑣𝑖𝑛𝑔𝑠 = 	 	𝑅! −	 	𝑅6 (8) 

where 𝑅6  and 𝑅! are the annual revenues before and after the 
interventions, respectively.  

The  NPV is the current value of all future cash flows (savings) 
over the project period, 𝑡 , from year one until the last year (𝑁) 
[27]. It can be calculated as 

𝑁𝑃𝑉 =	−𝐶𝑎𝑝𝐸𝑥$%&& +D
	𝑅! −	 	𝑅6
(1 + 𝑟	)-

7

-5(

(9) 

where 𝐶𝑎𝑝𝐸𝑥$%&& is the capital expenditure of the BESS, 𝑟 is the 
discount rate. The discount rate of 8% was selected as it reflects 
a representative rate for power generation technologies in SA 

[28]. 

The project’s internal rate of return (IRR), which is a method of 
evaluating the profitability of a project based on its positive 
returns [29], can be calculated as follows, by setting the NPV to 
zero: 

𝑁𝑃𝑉 = −𝐶𝑎𝑝𝐸𝑥$%&& +D
	𝑅! −	 	𝑅6
(1 + IRR	)-

7

-5(

= 0 
(10) 

The flowchart in Fig. 1. presents the methodology used for the 
operation of the simulation model. 

Fig. 1. Methodology flowchart of the developed simulation 
model 

The simulation model used a range of li-ion BESS sizes between 
0 MWh (Base case) and 10 MWh to determine the optimal BESS 
intervention size. 

3. Description of Case Study

The 2018 historical wind energy generation data for the 100MW
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Sere onshore wind farm was used as a case study to demonstrate 
the proposed methodology. As individual forecast error data was 
not available for South African wind farms, the clustered 
forecast error data for eight wind farms (which includes the Sere 
wind farm)  between 01 January 2018 to 31 March 2021 obtained 
from Eskom was used. The pattern in forecast errors and the 
generation profile considered are assumed to be valid for the 20-
year assessment. Fig. 2 illustrates the cluster that contains the 
Sere wind farm. 

Fig. 2. Cluster region with Sere wind farm 

The forecast error distribution, as seen in Fig. 3. is expressed as 
a percentage of the installed capacity having a slight positive bias 
of 0.046, median of 0.02 and standard deviation of 0.389. The 
negative forecast errors and positive forecast errors have means 
of -0.314 and 0.322, respectively.  

Fig. 3. Annual wind energy forecast error distribution of 
the clustered eight wind farms 

4. Results and Discussion

4.1. Base Case: No Intervention 
The base case results of the study comprised the annual penalty 
costs to be paid by the wind farm, with respect to different 
deviation factors employed as depicted in Table 2. The deviation 
factors were introduced to explore the impact of variation in the 
forecast error.  

Table 2. Base Case Results for the 20 Years of Operation 

Forecast deviation 
factor (%) 

Penalty cost at end of 
year one (R million) 

0% 9,55 

10% 10,07 

20% 10,57 

30% 11,05 

From the base case simulation results, for a 30% forecast 
deviation factor, it was found that a wind generator of 
approximately 100MW would experience a loss of about R 300 
million on the net revenue due to inaccurate forecasting over the 
entire 20 years of operation. The energy bid price of R 494.40 / 
MWh used was assumed to be the average of the energy bid 
prices of the preferred bidders of BW5. 

From the base case simulation, it was found that with the forecast 
errors increasing to 30%, the forecast penalty costs only 
increases by approximately 10% (approximately R 1 million) – 
this relationship is a function of the specific penalty regime. 

4.2. Simulation Assumptions 
Below are the assumptions made for the BESS; 

• Efficiency [%] – 95
• Cycle Life [Cycles] – 6 414
• Installation Cost/CapEx [R/MWh] – 6 588
• Operation Cost [% of the CapEx] – 1.2
• Replacement Cost [% of the CapEx] – 30
• Discount rate [%] – 8
• Inflation [%] – 4.5

4.3. BESS Operational Strategies 
Fig. 4. illustrates how different BESS sizes alleviate large 
forecast errors (30% forecast deviation factor) based on the four 
operational strategies tested.  

Fig. 4. Annual penalty costs of the four operation strategies 
with large forecast errors 
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Fig. 5. Annual number of cycles of the four operation 
strategies with large forecast errors 

As shown in Fig. 4., BESS operational strategy 4 which accounts 
for seasonal variations leads to the largest reduction in the case 
study project’s penalty cost (although only slightly more than 
strategy 3), and should therefore lead to the highest NPV and 
IRR in comparison to the other strategies. Strategy 4 also 
resulted in the greatest penalty alleviations for both small (5.6%) 
and large (5.2%) forecast errors and was thus used for the rest of 
the calculations in this section. With this strategy, more charging 
than discharging was required in summer and winter and hence 
a SOC target of 20% was maintained during these periods. 
Likewise, more discharging than charging was required in 
autumn and spring, and hence a SOC target of 60% was 
maintained.  

In terms of cycles, Strategy 2 has the least annual number of 
cycles, as depicted in Fig. 5. The reason for this relates to the fact 
that the BESS target SOC is not optimized for the actual 
operating conditions, leading to higher error penalty costs but 
lower battery charge/discharge cycles than other strategies. 

4.4. Financial Comparison 
The impact of various li-ion BESS sizes on financial viability 
was investigated next. As BESS size increases, the margin 
between the BESS CapEx and penalty cost reduction reduces as 
illustrated in Fig. 6. This illustrated that for the specific case 
study a larger BESS is less effective in alleviating the penalty 
costs. 

Fig. 6. Penalty cost reduction and BESS CapEx 

The feasibility of the intervention was then assessed by applying 
the financial indicators: NPV and IRR. Fig. 7 and Fig. 8 present, 
respectively the project NPV and IRR of the savings (or losses) 
made on various BESS sizes employed in the study. 

From the 2 to 6 MWh BESS, the IRR cannot be obtained due to 
the high replacement costs and replacement expected towards 
the end of the 20 years of project operation which resulted in 
huge losses.  From 7 MWh BESS, no replacement was expected 
during the 20 years of operation. Larger BESS sizes further 
lower IRR through replacement costs. 

Fig. 7. NPV of the project intervention over a 20-year 
period 

Fig. 8. IRR of the project intervention over a 20-year 
period 

It is feasible to integrate a BESS when the NPV is positive given 
a required discount rate / when the IRR is greater than the hurdle 
rate. The hurdle rate is the minimum rate of return expected on a 
project to make the cash flows positive [30]. 

The BESS size with the highest NPV is the most attractive 
investment. It was found that none of the BESS sizes employed 
is feasible as their NPVs were all negative (NPV<0) and their 
IRRs were less than 8%. The 1 MWh BESS had the highest NPV 
of R -0.492 million and IRR of 7.07%, with financial viability 
decreasing as battery size increase.  

4.5. Sensitivity Analysis 
Sensitivity analysis was carried out to understand the influence 

250

300

350

400

450

500

550

600

1 2 3 4 5 6 7 8 9 10

An
nu

al
 N

um
be

r o
f C

yc
le

s

BESS size [MWh]

Annual Number of Cycles

Strategy 1

Strategy 2

Strategy 3

Strategy 4

0

2

4

6

8

10

12

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

Pe
na

lty
 co

st
 re

du
ct

io
n 

[%
]

BE
SS

 C
ap

Ex
 [R

 m
ill

io
ns

]

BESS size [MWh] 

Penalty cost reduction and BESS CapEx with respect to the BESS 
sizes

BESS CapEx [R] Penalty cost reduction  [%]

-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10

-5
0
5

1 2 3 4 5 6 7 8 9 10

Pr
oj

ec
t i

nt
er

ve
nt

io
n 

NP
V 

 [R
 m

illi
on

]

BESS size [MWh]

Project intervention NPV 

 Base case

Deviation factor 0%

Deviation factor 10%

Deviation factor 20%

Deviation factor 30%

-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

0 1 2 3 4 5 6 7 8 9 10 11 12

Pr
oj

ec
t i

nt
er

ve
nt

io
n 

IR
R 

[%
]

BESS size [MWh]

Project intervention IRR 

Deviation factor 0%

Deviation factor 10%

Deviation factor 20%

Deviation factor 30%

180



of variations in key technical and economic parameters for the 
BESS sizes employed. The 1 MWh BESS size, 0% deviation 
factor and strategy 4 were kept constant. The analysis aims to 
explore (a) forecast error and SOC, (b) battery efficiencies, (c) 
battery replacement costs, (d) discount rate and (e) wind farm 
size. 

The study found that a small BESS, i.e 1 MWh is very sensitive 
to the size of forecast errors and BESS SOC due to the 
unsymmetrical nature of the forecast error, which is due to the 
small amount of available storage compared to the size of the 
error results in many instances where the BESS is not able to 
correct the error, in comparison to a larger BESS.  Only at around 
50 MWh BESS size are all error instances corrected. 

Fig. 9. Efficiency loss, IRR of various BESS efficiencies 

Fig. 10. IRR and NPV of various BESS replacement costs 

Fig. 11. NPV with respect to the discount rate variation 

The financial viability of the chosen BESS is very sensitive to 

the BESS roundtrip efficiencies, exhibiting an almost linear 
relationship as illustrated in Fig. 9. The relationship between 
BESS efficiency-related losses over the analysis period and 
BESS roundtrip efficiency is also shown. 

It is more financially feasible to install a 1 MWh BESS to a larger 
wind farm, i.e. 200 MW, as it is noted to have higher savings of 
R 21.38 million, higher NPV and IRR whereas there were losses 
made for a smaller wind farm, as noted from Table 3. The 
savings increase as the wind farm size increase. 

Table 3. Impact of Wind Farm Size on Results 

Wind 
farm size 

(MW) 

Total penalty 
w/o BESS 
(R million) 

Penalty 
reduction 

(%) 

Savings (R 
million) 

NPV 
(R) 

IRR 
(%) 

25 86,67 7.45 -4.90 -5.51 -16.6

50 173,35 5.96 -1.05 -3.86 -1.6

100 346,69 5.25 6.78 -0.47 7.1

150 520,04 4.92 14.19 2.79 12.6

200 693,39 4.73 21.38 5.95 17.6 

From the above it can be seen that although the percentage of the 
penalty cost alleviated increases as the size of the BESS being 
installed increases (along with increased installation costs), the 
installation cost for a bigger BESS rises more than the penalty 
costs alleviated thus making the increase of the BESS size 
unfeasible. 

From the obtained results, it can be inferred that the usefulness 
of li-ion battery technologies as BESS to support the growing 
penetration of wind energy which is intermittent in nature by 
alleviating the forecast errors as well as the respective penalty 
costs in SA is limited. The main reasons are the high installation 
costs of li-ion batteries, limited income from the BESS, BESS 
lifespan and the unsymmetrical nature of the forecast errors. The 
findings of this study align with those found in the literature [21], 
[22], [31]. 

5. Conclusion

In this paper, a methodology to incorporate BESS into a wind 
farm in SA was developed to allow the wind farm to alleviate the 
forecast errors and associated penalties. This was achieved by 
charging the BESS during periods of under forecasting and 
discharging it during periods of over forecasting. This approach 
was tested using the Sere wind farm actual wind energy 
generation data and the clustered forecast error data from eight 
wind farms in SA which includes Sere. Four BESS operational 
strategies were proposed, of which the strategy that accounts for 
seasonal variations was found to be optimal.  
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Two financial metrics (NPV and IRR) were determined to 
evaluate the feasibility and performance of the intervention. For 
the case study, the 1 MWh Li-ion BESS intervention was found 
to be most appropriate for this purpose as it has the highest NPV 
of R -0. 492 million, and IRR of 7.07% as compared to other 
BESS sizes used. However, due to the negative NPV and an IRR 
smaller than 8%, a much lower discount rate between 0 – 7.05% 
is required to make the NPV positive. Low-interest rate 
environments are therefore more conducive to such 
interventions. 

Given the findings from the study, it was concluded that whilst 
the BESS can be used to alleviate the forecast errors, it is 
currently financially unfeasible to offset the penalty costs in SA. 
A BESS with a large energy capacity is required to alleviate most 
forecast errors due to the imbalance between positive and 
negative forecast errors, thus affecting the BESS performance. 

 Additionally, it was clear from the case study that the project 
viability estimation is very sensitive to the replacement cost that 
is assumed in the modelling, and to a lesser extent the BESS 
roundtrip efficiency. So, should the prices of BESS fall or cycles 
increase it might become viable. 
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Abstract: Energy is a major driver of social and economic 
development, but energy should also be provided at the right 
time and place and in the right amount. Thus, advance planning 
is required, and this planning demands accurate energy data. 
Energy system modeling has proven valuable for rationalizing 
resources and simulating and analysing energy systems prior 
to implementation for optimal design and during operation for 
improved operational decisions to be made. Due to lack of 
data, in particular in developing countries, energy systems 
studies often use aggregated statistical and/or survey data as 
well as data from geographic information systems (GIS). Yet, 
the accuracy of available statistical and survey data is 
debatable and may lead to over or underestimation of 
electricity demand and/or supply. This is particularly the case 
for rural areas. This calls for new modeling methods for 
electrification planning. Thus, this article reviews trends in 
modeling approaches used in studies of rural electrification in 
developing countries, particularly in sub-Saharan Africa, 
between 2012 and 2022. The majority of studies tend to 
optimize power generation systems based on the lowest-cost 
technologies and with a high degree of disaggregation of 
technologies. Results indicate that geospatial tools such as GIS 
help divide rural and urban zones, which is important for 
energy planning because of the different features of these 
different zones. Modeling electrification at the subnational 
level (especially in rural areas) requires higher resolution, in 
spatial and time variables. The models should include local 
variations in energy resources such as wind, biomass, and 
small hydro, to allow for good prediction of potential 
generation at different time scales and better planning of the 
alternatives that need to be considered for power system 
reliability. Besides, high-resolution population and resource 
data as well as high-time computational resolution would 
enhance the models result. 

Keywords: electricity; modeling approach; sub-national, 
rural. 

1. Introduction

Energy (and mainly electricity) access represents a key factor 
for the development of any country. It is a way out of poverty, 
increasing productivity and improving health from a 
population perspective. Most developing countries like sub-
Saharan Africa (SSA) are characterized by a lack of access to 

electricity and poor power quality and reliability [1]. The 
reliability is related to the low or weak transmission and 
distribution infrastructure, and strategies to expand grid 
penetration (as the main source of electricity) need to 
acknowledge that supply and demand obstacles are important 
and interlinked. 

With the advances in technology and innovation and 
increasing concern in environmental problems (due to fossil 
fuel-based energy and electricity generation and traditional use 
of biomass), there is an increased penetration of renewable 
energy generation through off-grids and mini-grids [2]. 
Strategies to combine these technologies with the existing 
electrical grid can contribute to expanding the access to 
electricity for a large part of the population living in rural and 
remote areas and help to improve the quality of power are 
necessary. This has been done through different energy 
modeling approaches and the results are used to help decision-
makers to minimize the investment cost and possible socio-
environmental impacts associated.  

The prediction of energy demand and supply in developing 
countries is a complex task, as any expansion of electricity to 
new areas would create its own demand [1]. Besides, most 
energy (electricity) models fail to represent differences 
between urban and rural areas regarding socioeconomic, 
cultural, and structural characteristics. As variable renewable 
energy resources vary considerably in time and space, models 
must include a high spatiotemporal resolution, and some 
models are not applicable due to the lack or inconstancy of the 
input data [3].  

Thus, the focus of this study is to critically review scientific 
papers related to modeling of electric energy systems in rural 
electrification planning in developing countries published 
within the period 2012 to 2022, to analyse and compare 
different approaches used, and thereby identify suitable 
approaches. Thus, as a guide for the study, the following 
research questions were formulated: 

 Which energy systems modeling approaches and
methodologies have been used in modeling electricity
supply and demand at sub-national level in rural areas
of developing countries?

 What are the main energy modeling parameters
(characteristics) in energy systems at the sub-national
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level in developing countries? 

 Which type of energy modeling tool is preferable to
represent the supply and demand of rural areas in
developing countries?

 How could energy modeling approaches be improved
to better capture crucial characteristics of rural areas?

2. Methodology

The purpose of this study is to identify appropriate modeling 
approaches for rural electrification at the sub-national level in 
developing countries. Existing reviews of energy models in 
developing countries focus on energy models at national 
and/or international levels ([3], [4]). However, different from 
national, modeling energy systems at small geographical areas 
requires higher spatial resolution than national. Further, the 
mentioned reviews focus on analysis of energy modeling tools, 
while our focus is to analyse and compare different approaches 
used and, thereby, identify suitable approaches. 

The methodological approach is divided into two steps. The 
first step consists of the identification and selection of relevant 
scientific peer-reviewed papers on Google Scholar, with the 
help of Boolean operators (AND, NOT, OR). From a total of 
134 articles, 30 were pre-selected for further review, and 14 
were selected as core papers. Due to the rapid development of 
energy modeling tools, papers reviewed were limited to 
publications between 2012 and 2022. 

In the second step, a critical review of the selected papers with 
a focus on analyses of the approaches used rather than of the 
models was applied. The majority of rural villages in 
developing countries, such as in sub-Saharan Africa, do not 
have access to electricity currently. Due to abundant resources, 
a large share of variable renewable (e.g, solar and wind) energy 
generation is expected when these areas are electrified together 
with a highly dynamic electric demand. Thus, a spatial and 
temporal variation analysis with high-resolution is of great 
importance. The terminology applied differs from paper to 
paper, thus the review was based on a set of criteria including 
the analytical approach, geographical coverage area, domain, 
time horizon, methodological approach, spatial resolution, and 
temporal resolution [5], type of input data summarized in 
Table 1. 

The information in Table 1 allowed us to do a comparative 
analysis of the approaches used in the reviewed studies in 
terms of similarities and differences, weaknesses, and 
robustness. The analysis of the limitations of the different 
models used in the different studies allowed the identification 
of the critical aspects that must be considered when developing 
models to predict energy supply and/or demand. 

In this study, main modeling approaches are identified. The 
most appropriate tools are identified based on the type and 
availability of data and their ability to cover different 
electrification technologies, including temporal and spatial 

resolution. 

3. Literature Review

In the literature, electrification planning is usually carried out 
with the help of energy models, which are fundamental tools 
for the adequate exploitation of natural resources for the 
generation, distribution, and consumption of electricity. The 
use of models increases the ability of the country to anticipate 
and respond to the rapid changes occurring, and new issues and 
opportunities [1], as it allows better resource and technology 
management, without wasting financial and material 
resources, as well as time saving. 

Energy models can be classified in several ways, however this 
study focus on: (i) the analytical approach, (ii) coverage area, 
(iii) domain, (iv) time horizon, (v) methodological approach,
(vi) spatial resolution, and (vii) temporal resolution [6], [7]

Based on the analytical approach [6], the models can be top-
down or bottom-up. Top-down models, often econometric 
model, use aggregate data to estimate energy demand and 
supply. Least-cost technologies are set by market behaviors, 
however, such technologies are new and thus not represented 
in the current system. For that reason, top-down approaches 
often underestimate the potential for efficiency improvements, 
and therefore not appropriate to identify sector-specific 
policies [7]. Bottom-up (often techno-economic) models 
disaggregate electricity supply and demand to individual 
technology units. They allow the user to compare the impact 
of a set of different technologies and to identify the optimal 
technologies based on the performance, technical potential, 
and technology efficiency [7]. Although, bottom-up approach 
neglects macroeconomic impacts on technology selection ( 
[7], [3]).  

The time horizons addressed correspond to the time frame for 
which the model is applied, and can be short-term (up to 5 
years), medium-term (between 3 and 15 years), and long-term 
(above 10 years) ( [6]; [8]). Long-term models are useful for 
planning expansion of generation capacity, while short-term 
models are usually used to analyze electricity system 
configurations and their future modifications [8]. Moreover, 
the time resolution corresponds to the time steps in which the 
simulation year is divided. It can be categorized into low (1 to 
32 time-slices, usually 12-time slices is used in case of three-
time slices per season), medium (36 to 288 time-slices, using 
representative days approach), and high-resolution (hourly 
representation, 8760-time slices annually ( [3]; [8]). High-
resolution models increase the computational burden but are 
crucial when considering variable energy generation (such as 
solar and wind power) as they depend on weather patterns.  

Regarding the methodology, energy models are often 
classified as optimization or simulation models [8]. According 
to [6], optimization models are used to find the best solution 
for given variables while meeting given constraints, and in the 
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case of developing countries, are usually applied to find the 
least-cost electrification option. Simulation models are usually 
used to reproduce a simplified operation of an electricity 
system and are helpful when it is impossible or extremely 
costly to do experiments on the system itself.  

Since the focus of this study is to analyse electrification 
modeling approaches for rural electrification within 
developing countries, especially in SSA countries, only studies 
conducted at the sub-national electrification level are 
considered in the review.  

Moksnes et al. [2], used a disaggregated approach to optimize 
least-cost electrification among grid, mini-grid, and off-grid 
options in Kenya. They combined two energy optimization 
tools, OpeN-Source Spatial Electrification Toolkit (OnSSET) 
and Open-Source Energy Modeling SYStem (OSeMOSYS), 
using 36-time slices over the year and 1 km spatial resolution. 
The models consider two scenarios of electricity demand 
layers at the residential level. The modeling approach used in 
this study gave a detailed map based on the specific resource 
location. The same approach was used in [9], applying 
OnSSET to project long-term energy generation scenarios at 
the sub-national level in SSA, using aggregated energy 
demand. In this study, however, 1-hour resolution and 1 km 
spatial resolution are used, and the result is a disaggregated 
technology generation.  

Li et al. [10], estimated the electric energy consumption (EPC) 
in China using night-time light (NTL) data from 198 cities. For 
data collection, consumers were disaggregated by sector. The 
input data include statistical data (population density, 
urbanization rate, employment) for each city and satellite NTL 
image data and administrative boundaries. 

Ohiare [11], used the Network Planner (NP) model to 
investigate long-term electrification in Nigeria based on least-
cost options. The model built in GIS tool at hourly time 
resolution and 1 km spatial resolution to compare hybrid solar 
PV linked to diesel generators, mini-grid diesel-based, and 
grid technologies. Required input data include electricity 
demand and cost, population, and other socio-economic 
parameters. The optimized generating plants are spatially 
located based on the population density and availability of 
resources. A disaggregated approach was used to estimate 
electricity demand at the community level.  

A study using the LoadProGen tool was conducted by [12] to 
estimate the load profiles and size of a PV system with battery 
storage in a small community in Tanzania. The tool uses a 
bottom-up stochastic approach with a time resolution of 1 
minute. Another work using a bottom-up approach addressed 
the modeling and optimization of a mix of renewable energy 
technologies in an unelectrified village in India [13]. The 
Particle Swarm Optimization (PSO) algorithm coded in 
Matlab tool was used for the modeling. 

Guta and Borner [14], used a dynamic linear programming 
model (DLPM), an energy sectoral tool based on General 
Algebraic Modeling System (GAMS) software to identify 
optimal least-cost options for integrating the energy source 
mix in Ethiopia. The DLPM uses a bottom-up approach to 
analyse six different technology options (biomass, 
hydropower, wind, solar, and geothermal). The study 
considered a 100-year horizon (divided into groups of 5 years), 
with a time resolution of 1 hour at national and sub-national 
levels. Input data include daily and weekly peak and off-peak 
load duration, discount rate, total annual costs, CAPEX, land 
use, fuel cost, and availability, existing installed capacity, 
technology capacity factor, population and economic growth 
rates, power trade, and the main outputs include energy 
demand scenarios (peak and medium), capacity (power) and 
electricity, electricity price. 

Tian et al. [15], used Autoregressive Integrated Moving 
Average (ARIMA) and the Long-Range Energy Alternative 
Planning (LEAP) model for long-term (2010 – 2030) forecasts 
of energy demand scenarios and the resultant environmental 
impacts in China. The study was conducted at local level using 
a top-down analytical approach at hourly time resolution. The 
building sector was disaggregated into commercial and 
residential, and the required data include population, energy 
efficiency, GDP, income level, urbanization level (building 
area), energy resource availability, energy export/import, 
energy supply, energy policy, energy technologies and 
resources. 

Schinko et al. [16] used the Renewable Energy Pathways 
Simulation System (renpassG!S), a numerical partial 
equilibrium model, to assess the long-term techno-economic 
feasibility of different electricity generation portfolios in 
Morocco. The model uses a disaggregated approach in 
selecting electricity supplying technologies. Input data include 
load curves, meteorological and geographical data at hourly 
resolution, capacity/investment and running costs of existing 
generation technologies, grid infrastructure, and levels of 
demand. 

Aly et al. [17] used a System Advisor Model (SAM) to 
investigate the techno-economic feasibility of a concentrating 
solar power (CSP) technology in Tanzania. This model 
combines bottom-up and top-down approaches to optimize 
cost and technology and uses a spatial resolution of 1 km2. 
Simulations were done at hourly basis. The main input data 
include direct normal irradiance at the earth`s surface, 
geographical coordinates, degradation rate, collectors’ 
geometry and optical parameters, and heat transfer fluid 
properties. 

Moner-Girona et al. [18], used a Rural Electrification Spatial 
Model for Kenya (RE_RU_KE_tool) to identify the optimum 
electrification split between grid extension, mini-grids and 
stand-alone technologies for different locations within the 
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country. The model uses a geospatial/numerical 
methodological approach for the unelectrified population. The 
main input data include spatial data layers such as energy 
resources (e.g, hydro, geothermal, wind and solar), the existing 
energy infrastructure, population, households’ number and 
size, income rate, and electricity costs. 

Zhong [19], uses Geographically Weighted Regression GWR) 
model to determine a long-term (1992-2013) electric power 
consumption (EPC) based on DMSP/OLS night light (NTL) 
data in three urban areas (YREB) of China. The model runs at 
yearly time resolution and 1km spatial resolution. Apart from 
NTL, input data include annual precipitation and average 
temperature, sunshine hours, and socio-economic data (e.g, 
GDP, urbanization rate, per capita income, built-up area). 
Energy demand is calculated based on statistical data. The 
relative difference of EPC is determined by means of 
coefficient of variation method. 

Lee et al. [20], used a Reference Electrification Model (REM) 
to determine a long-term cost-optimal technology mix to 
provide universal access to electricity in Uganda. The model 
has high spatial granularity and a technically detailed approach 
and uses hourly time resolution. Input data include 
consumption demand, existing grid topology, networks, and 
generation components. The energy supply is disaggregated 
into grid extension, mini-grid, and standalone technologies. 

Musselman et al. [21], used a multi-period optimization model 
for power generation and transmission system expansion 
planning to analyse short and long-term impacts of the change 
of electrification rate and policy on the cost and resources 
selected for power system expansion in Rwanda. The model is 
based on linear programming and the analysis was conducted 
at district level, at hourly and yearly time resolution to capture 
solar variations. Input data include fuels, energy resources, 
costs, existing generating units and costs, transmission 
network, discount rate, population, and economic factors. 

4. Results

The results of the reviewed papers are summarised in Table 1. 
From each paper was identified the modeling tools, the 
coverage area, the domain (supply and/or demand), time 
horizon and resolution, spatial resolution, analytical approach, 
methodology, and main parameters Table 1 shows that 13 
different tools were used to model electricity at the subnational 
level in rural areas of developing countries. All studies were 
based on bottom-up methods to model either electricity supply 
or demand. 

The time resolution varied from 1 minute, 1 hour to 1 year. 
Hourly resolution was mainly used for short- and medium-
term studies, while yearly resolution was mainly used for long-
term studies. With the exception of studies [11] and [14], all 
others were conducted at a 1 km spatial resolution of 1 km. 
Electricity demand is usually modeled in the short-term, while 

supply is modeled for medium and long-term horizons in most 
studies. 

As for the methodology used, electricity supply is mainly 
modeled with the aim of finding the optimal technology with 
the least- cost. However, a few studies [13], [15] are based on 
simulation and optimization methods. 

5. Analysis and Discussion

Most rural areas of developing countries are not yet electrified 
and data on electricity demand is not available. For this reason, 
electricity demand data is either taken from other already 
electrified regions with similar characteristics or collected 
through local surveys of end-users. Bottom-up approaches are 
the most used because they allow detailed information from 
the consumer to be obtained and reduce the risk of 
under/overestimation of consumption. They also help the 
selection of the techno-economic optimal technology mix that 
suits particular demands. 

Moreover, due to financial constraints and the availability of 
energy resources, the decision to electrification option is often 
based on the lowest capital and operating costs, including 
associated emission costs. 

The electrification of rural areas with low population density 
requires a combination of grid extension and off-grid 
technologies. Off-grid solutions are mainly based on 
renewable energy systems and their implementation depend on 
the availability of energy resources, the physical-geographic 
characteristics of the location, as well as socioeconomic 
factors.  

The use of GIS tools when planning energy systems helps to 
obtain these data for a specific location without necessarily 
being on the ground. The studies [2], [9], [10], [11], [15], [21], 
[18] and [19] rely on geospatial NTL data to split electrified
and unelectrified areas. Since NTL is based on remote sensing
data referring to illuminated areas, it may also account for the
illumination from other sources than electricity (e.g.,
firewood), but data accuracy can be improved using filters.

Future community energy demand should be carefully 
analysed. This is a complex task due to the lack of historical 
data. All the reviewed papers used a bottom-up approach to 
model energy demand basedon statistical data. The use of 
statical demand data means that data is based on other 
(already) electrified regions sharing similar characteristics, but 
future demand developments, including developments of 
economic activities resulting from electrification, are not 
covered. To minimize the risks imposed by those uncertainties, 
it is recommended to consider a dynamic energy demand, 
considering the effect of parameters influencing future energy 
demand developments [20].  
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Table 1. Comparison of different approaches used for rural electrification in developing countries. 

Author Model 
Study 
area 

Domain 
Time 

horizon 
Time 

resolution 
Spatial 

resolution 
Analytical 
approach 

Methodology Input parameters 

[15] 
ARIMA/ 
LEAP 

Community  Demand 
2010 - 
2030  

Yearly - Bottom-up 
Simulation/ 
optimization 

P, GDP, I, PG, eff, 
Es, Tech, D, U, ER, 
Fa, HH 

[14] 
GAMS 
(DLPM) 

Local 
Demand/ 
supply 

2010-
2110 

16-slices 
per year 

0.01 km2 Bottom-up  Simulation 
P, Ir r, CAPEX, D, 
Cap; Tech, Hy, W, 
Gt, Bio 

[17] SAM Project Supply 
2017 and 
2025  

Hourly 1 km2 Bottom-up 

Optimization 
Tech, CAPEX, 
O&M, P 

[2], [9]  
OnSSET/ 
OSeMOSYS 

Subnational 
Demand/ 
supply 

2012-
2040/ 
2030 

hourly 1 km2  
Bottom-up/ 
top-down 

Optimization D, P, I, GIS, HH, 
GDP NTL, El_P, F, 
Grid, CAPEX, O&M, 
W, S 

[16] renpassG!S
National/ 
sub-national 

Supply 
2020-
2050  

Hourly/ 
yearly 

- Bottom-up Simulation  
Tech, W, Ir grid, D, 
CAPEX, P, O&M  

[18] 
RE_RU_KE 
tool  

Sub-national Supply 
2008-
2016  

Hourly 1 km 
Bottom-up 
(GIS) 

Optimization 
ER, GIS, grid, Cap, P, 
HH, Ir, M, , Ta, Hy 

[19] DMSP-OLS Sub-national  Demand 
1992-
2013  

Years 1 km Bottom-up Forecast 
NTL, Tech, grid, D, 
M, GDP, I, CAPEX 

[10] 
NPP-VIIRS/ 
NTL  

Sub-national/ 
local  

Demand 2017 Hourly - 
Bottom-up 
(GIS) 

Forecast 
NTL, GRP, 
statistical, ED 

[11] NP 
National/ 
local 

Supply 
2013- 
2030  

Hourly 25 m Bottom-up 

Optimization 
El_P, HH, U, D, Ir, 
GIS, grid 

[21] MPLOM 
National/ 
sub-national 

Supply 
2015-
2046  

hourly/   
5 years 

1 km Bottom-up Optimization 
F, ER, D, grid, El_P, 
CAPEX, P, HH, GDP 

[20] REM 
National/ 
sub-national 

Supply 
Short-
term 

Hourly high Bottom-up Optimization 
D, grid, Tech, eff, F, 
RE 

[12] LoadProGen Local 
Demand/ 
supply 

Short-
term 

1 min - Bottom-up Optimization D, Ir, CAPEX 

[13] PSO Local Supply 
Short-
term 

hourly - Bottom-up 
Simulation/ 
optimization 

CAPEX, O&M, Ir, 
W, eff.,D,Bio, Hy, 
BAT, L 

Table 1: ER- energy resources combined; Di- Diesel, F- fuel, Tech- energy technologies and their technical parameters, Cap- 
installed capacity, M- meteorological data, GIS- geospatial tools and data, G- existing electrical generation, grid- existing/ planned 
grid, eff- technology efficiency, U- urbanization/ urbanization rate; D- Demand/ demand growth; HH- Households number/Size; I- 
income/ income level; L- land coverage/floor space/building area; P- population, population density/growth rate, CAPEX – 
investment/ capital expenditure; O&M- running costs, r- discount rate, GDP-Goss Domestic Product; GRP- Gross Regional Product, 
Exp/Imp- energy export/import, EL_P- electricity price, and S- subsidies, Optimization.
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The increasing penetration of intermittent renewable energy 
generation introduces great variability in power generation 
and, as a result, there might be unbalanced supply-demand. 
High resolution spatial and temporal modeling are used to 
overcome this problem [3]. However, increasing the model 
resolution leads to an increase in the time required for the 
model to obtain the solution, i.e., a balance between spatial and 
temporal resolution is required. Electricity system planning 
studies at the local level are typically conducted at higher 
spatial resolution [11], [15]) than for large areas (i.e., country, 
region, or global) ([16], [9], [19], [21]). Higher temporal 
resolution is often used for short-term planning (i.e., 
operations and maintenance, tariff setting), while lower 
temporal resolution is typically used for long-term planning 
(new investments).  

An alternative to making the best use of distributed renewable 
generation is to combine it with other technologies (e.g., the 
electric grid or other technologies) and meet demand at all 
times. To achieve this, models must allow for the analysis of 
multiple options. For example, NP and Load ProGen consider 
only PV technology, but the OnSSET, renpassG!S, NP, 
RU_RU_KE_tools, and REM models consider multiple 
energy technologies. 

The time horizon is very important when planning 
electrification at sub-national level. The longer the planning 
period, the more uncertain assumptions on e.g. population and 
GDP growth [3], [6], and demand [6] will be and accordingly, 
model results will be less useful. Some of the reviewed studies 
were carried out for both the short-term and long-term [15], 
[14], [18], [21], others only long-term [9], [11], [19], [16], 
[18], and three applied a short-term horizon ( [10], [12], [13]) 
When a higher time resolution is considered, the models take 
long time to run , [13]. 

When modeling power systems in rural areas of developing 
countries, socioeconomic and cultural factors are important for 
technology selection in addition to known technical 
parameters. For example, rural populations in SSA countries 
that have access to electricity often rely on traditional biomass 
to meet their cooking and heating needs, and electricity is used 
only for lighting and to run some appliances because of their 
habits and lower ability to pay for electricity. In addition, 
population demographics and urbanization have a great impact 
on the future electricity demand development and its spatial 
caracteristics and, thus, for the optimal generation mix and 
distribution so generation capacity planning should take this 
into account. 

There are a number of energy modeling tools that can be used 
for modeling supply and demand of rural areas in developing 
countries: from the literature review was found that 
OnSSET/OSeMOSYS ([2], [9]), ARIMA [15], GAMS-DLPM 
[14], SAM [16], renpassG!S [21], RE_RU_KE [17], NPP-
VIIRS [10], GWR [18], and NP [11] are the most widely used 

tools. Nevertheless, these energy models have their own 
limitations and could be further improved. The models should 
include local variations in energy resources such as wind, 
biomass, and small hydro, to allow for good prediction of 
potential generation at different time scales and better planning 
of the alternatives that need to be considered for power system 
reliability. Besides, high-resolution population and resource 
data as well as high-time computational resolution would 
enhance the models result. 

When addressing grid extension, factors like geographical 
terrain, elevation and land use can be incorporated to improve 
the accuracy of the models. Furthermore, the use of geospatial 
data is crucial to fill the data gaps when there is a lack of 
recorded data. As bottom-up approaches are data-intensive, the 
advent of GIS data allows to overcome the problem of lack of 
recorded data, but the accuracy of the data is limited by the 
satellite sensor measuring range. 

6. Conclusions

This study reviews original scientific papers on electricity 
supply and demand modeling in rural areas of developing 
countries. It is concluded that the bottom-up approach is most 
commonly used in modeling electricity supply and demand at 
the subnational level in rural areas of developing countries. 
This approach makes it possible to obtain detailed information 
from consumers and reduces the risk of underestimating or 
overestimating consumption. In most of the studies reviewed, 
the main objective is to find the optimal electrification 
technology (or mix of technologies) based on the least-cost. 

Electrification modeling at a sub-national level (e.g., in rural 
areas) using decentralized systems based on variable 
renewable energies requires the use of both spatial and time 
high-resolution. All the models used in the reviewed papers 
appear to be appropriate for modeling electricity systems at the 
subnational level. However, the OnSSET, renpassG!S, NP, 
RU_RU_KE_tools, and REM models allow the analysis of 
multiple energy resources and minimize the lack of data due to 
the use of GIS tools, and therefore are found the most suitable 
candidates. 

To better capture the local variation factors like geographical 
terrain, elevation and land use can be incorporated to improve 
the performance of the models. In addition, socio-economic 
and cultural factors, and land use must be taken into account 
for the acceptance of the technology by the end-users. 
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Abstract: Hydrogen production through water electrolysis, 

coupled with renewable energy sources presents a promising 

solution to significantly reduce carbon emissions. A substantial 

body of research has been conducted in the integration and 

modelling of these two domains, resulting in numerous models 

and simulation approaches being presented in the literature. 

However, selecting an appropriate model that accurately 

characterises an electrolyser is unclear, especially when 

renewable energy sources are integrated.  

In this paper, the methodology used to review existing literature 

is outlined, followed by a discussion of the relevant electrolyser 

theory needed in order to model such a process. This work 

reviews various electrolyser models for both Alkaline 

Electrolysers and Proton Exchange Membrane Electrolysers. 

The models vary in complexity, ranging from simplified linear 

approximations to highly intricate ones that utilise experimental 

data. 

The research focuses on evaluating the advantages and 

drawbacks of these models, along with identifying scenarios 

where the implementation of each model would be appropriate. 

The paper places special emphasis on essential variables 

including electrolyser efficiency, hydrogen production, power 

input, temperature affect, load range, operating states and ramp 

up and ramp down rates. These parameters play a crucial role in 

developing an accurate electrolyser model when integrated with 

variable renewable energy sources. 

Keywords: Electrolyser; model; green hydrogen; renewable 

energy; review 

1. Introduction

Hydrogen production powered by renewable energy sources has 

grown in popularity as the demand for more sustainable 

production processes has increased [1]. Accurately representing 

a system or process through a mathematical model is vital when 

analysing the system in both isolation and within a greater 

system or process. The research presented forms part of a greater 

research project involving green ammonia where electrolysis 

accounts for roughly 90% of the power consumption [2]. 

Accurate modelling of the electrolyser system and the power 

source is crucial to producing accurate results. 

Water electrolysis is a mature and well-established technology, 

with numerous mathematical models and simulation approaches 

existing in the literature. This poses a challenge when selecting 

a suitable approach. Is it necessary to develop and use a complex 

model and perform experiments in order to determine model 

parameters, as well as validate this empirical model, or would a 

simple linear approximation suffice? This paper aims to outline 

what type of electrolyser modelling approach is necessary. It 

must be noted that this paper does not provide an exhaustive 

review of models in literature, but merely a guide and direction 

in which to go to simulate an electrolysis system. 

This paper presents a methodology used to review various 

relevant papers. A brief overview and comparison of the 

operation of two readily available systems, alkaline electrolysers 

(AKE) and proton exchange membrane (PEM) electrolysers is 

then discussed. The different types of modelling approaches that 

exist are explored and presented, including how these methods 

are implemented in different scenarios. Finally, the scenarios are 

discussed and compared with a conclusion drawn. 

2. Methodology

There exist numerous modelling and simulation approaches in 

the literature. In order to systematically review as many relevant 

articles as possible, a set of keywords, relevant to the research 

presented in this paper is selected.  

Keywords: renewable energy, hydrogen production, model, 

modelling and (alkaline electrolyser OR proton exchange 

membrane) 
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This generated a number of results across the Engineering 

Village and Institute of Electrical and Electronic Engineers 

(IEEE) databases. The relevant results were systematically 

reviewed to extract pertinent information for the research 

review, resulting in the identification of numerous approaches. 

These were then categorised into their respective modelling 

approaches and analysed. The literature review produced limited 

results pertaining to electrolyser modelling, the need for 

this category of article is thus relevant. 

3. Electrolyser Theory

3.1. Operation 

This paper explores two different types of electrolysers, the 

alkaline electrolyser and the proton exchange membrane 

electrolyser.  

3.1.1. Alkaline Electrolyser 

Alkaline water electrolysis is the process of splitting water into 

gaseous hydrogen and oxygen using electrical energy. Two 

electrodes are submersed in an electrolyte. When a DC current is 

passed from the cathode to the anode, the electrolyte is split into 

hydrogen and oxygen ions. Figure 1 illustrates the electrolysis 

process: 

3.1.2. Proton Exchange Membrane 

Proton Exchange Membrane Electrolysers operate on a similar 

principle. Water is split into oxygen, hydrogen protons and 

electrons. These protons then travel through the proton 

conducting membrane to the cathode, the electrons exit from the 

anode and travel though the external DC circuit to the cathode 

where they combine with the protons at the cathode to form 

hydrogen. 

3.2. Key Parameters 

The modelling of electrolysers, ranges in complexity from 

simple linear approximations to detailed models requiring 

specific system parameters such as electrode areas and 

electrolyte concentrations. Due to the intermittent nature of 

renewable energy, modelling the electrolyser such that the ramp 

up, ramp down and operating state are included.  

3.2.1. Specific Power Consumption (𝑘𝑊ℎ/𝑘𝑔) 

A crucial measure of electrolyser systems performance. It is 

defined as the amount of power required to produce one kilogram 

of hydrogen [4].The electrolysis of water has a parameter known 

as the Higher Heating Value (HHV), which is the 

thermodynamic minimum, namely, the smallest amount of 

energy required to split water into hydrogen and oxygen, an 

electrolyser with a specific power consumption equal to its HHV 

has an efficiency of 100 %. This value gives an indication of the 

overall system efficiency in terms of energy consumption. 

3.2.2. Efficiency (%) 

There are different measures of electrolyser efficiency; 

Faraday’s efficiency, Voltage efficiency and overall efficiency. 

Faraday’s efficiency is based on the theoretical amount of 

hydrogen produced and the actual amount of hydrogen produced. 

Voltage efficiency is based on the thermoneutral potential and 

cell voltage. However, these parameters are beyond the scope of 

this research. Electrolyser efficiency (η𝐸) in this paper is

regarded as the ratio between specific power consumption (𝑃𝑆𝑃)

and the HHV, this is defined in Equation 1: 

η𝐸 =
𝑃𝑆𝑃

𝐻𝐻𝑉
(%)           (1) 

3.2.3. Hydrogen Production (𝑘𝑔/ℎ) 

 The hydrogen output of the electrolyser in 𝑘𝑔/ℎ. The units used 

are to ensure a standard measurement regardless of pressures or 

fluid densities.  

3.2.4. Ramp Rates (%/𝑠) 

The ability for an electrolyser to increase or decrease hydrogen 

output as the renewable energy source fluctuates is vital to 

maximise hydrogen output. Due to the intermittent nature of 

renewable energy sources, inclusion of a ramp rate in a model is 

paramount to ensure accurate results. Whilst the inclusion of a 

ramp rate when dealing with hourly resolution data is not crucial, 

when the time resolution of the data is in the order of seconds it 

becomes a crucial factor.  

3.2.5. Degradation (%/𝑦𝑒𝑎𝑟) 

The process of electrolysis results in the anode, cathode and 

membrane of an electrolyser degrading over time and eventually 

requires replacement. Electrolyser performance also deteriorates 

due to this degradation. This variable is seldom included in 

papers spanning less than a year, it becomes more prevalent in 

Fig. 1. Diagram of Electrolysis Cell Operation [3] 
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longer time periods, such as greater than 5 years. 

3.2.6. Load Range (%) 

Renewable energy, as mentioned prior, is inherently intermittent, 

resulting in periods where the power available to an electrolyser 

falls outside of its load range and thus will not produce any 

hydrogen. Alkaline electrolysers exhibit slightly poorer load 

range ability compared to proton exchange membrane systems 

[5]. Incorporating the load range of the system allows for 

different operating states to exist, for example idle, off or 

operating. This adds a further degree of accuracy to the analysis. 

3.3. Advantages and Disadvantages 

The electrolysers reviewed in this paper, provide similar levels 

of performance, however there exist some differences. Table 1 

discusses the major parameters: 

Table 1. Comparison of Electrolyser Performance 

Parameters  [5]– [7] 

Parameter 
Alkaline 

Electrolyser 

PEM 

Electrolyser 

Power Requirements 

(𝑘𝑊ℎ/𝑘𝑔) 
53.4 62.3 - 70.1 

Load Range (%) 20 - 110 0 - 160 

Production Range (𝑡/𝑑𝑎𝑦) 0.1-1.2 4.25 

Efficiency (%) < 73.8 56-73

Ramp Rate (%/𝑠) 10 20 

Overall, PEM electrolysers are marginally better when coupled 

with renewable energy sources due to their fast ramp rates and 

larger load range. The ability to operate at very low levels is 

highly beneficial when renewable energy supply is low, as well 

as being able to operate at above rated conditions for short 

periods contribute to it being a marginally better system. 

However degradation of PEM electrolysis systems and capital 

investment cost is significantly higher [8]. 

4. Models Reviewed

Different approaches exist in order to model an electrolyser, 

these include linear, empirical and semi-empirical, static, 

dynamic and physical models. 

4.1. Linear Model 

A linear model is the simplest of the models found in the 

literature [3], [10-18]. It assumes the input power (𝑃𝑎𝑝𝑝) and

hydrogen output (�̇�𝐻2
) of the electrolyser are proportional,

according to Equation 2, where 𝑃𝑟𝑎𝑡𝑒𝑑 and �̇�𝑟𝑎𝑡𝑒𝑑 are defined as

the rated power and hydrogen output of the electrolyser 

respectively. 

�̇�𝐻2
=

𝑃𝑎𝑝𝑝

𝑃𝑟𝑎𝑡𝑒𝑑
�̇�𝑟𝑎𝑡𝑒𝑑(𝑘𝑔/ℎ)  (2) 

The following equation uses a more theoretical approach. The 

electrolyser efficiency (η𝐸) and higher heating value (𝐻𝐻𝑉) are

included.  

�̇�𝐻2
=

η𝐸𝑃𝑎𝑝𝑝

𝐻𝐻𝑉
(𝑘𝑔/ℎ)  (3) 

Varela et. al. [9] analysed multiple electrolyser models which 

revealed the power input and hydrogen output are strongly 

correlated and thus allows for a linear approximation. It is 

evident this does not factor in other crucial system parameters 

such as temperature, pressure and electrode characteristics. This 

has led to linear models being a common approach in many 

papers found in the literature. The use of a linear model would 

not be suited to applications where detailed results are required 

or if all parameters needed in a more detailed approach are 

known. 

4.2. Empirical & Semi-Empirical Models 

Empirical and semi-empirical models are also very common in 

literature [3], [7]. Empirical modelling relies on experimental 

data available or that has been measured, whilst semi-empirical 

models utilise both experimental data and theoretical principles 

in order to characterise the electrolyser. The model generated is 

thus specific to one type of electrolyser and thus has poor 

universality [10].  

The use of empirical modelling does not take into consideration 

the electro-chemical reaction [10], the core principle behind the 

electrolyser operation. This results in the model being developed 

to be quite restricted if applied to other systems.  

In order to improve this a semi-empirical model would be used. 

This approach incorporates both empirical data obtained and 

theoretical principles. This allows for the inclusion of variables 

such as pressure, cell and/or stack temperature, electrode area, 

and various thermodynamic and heat transfer-related 

phenomena, however, this does increase complexity.  

Hybrid renewable energy systems more often than not involve 

some form of optimisation, and non-linear formulae, which are 

common in semi-empirical and empirical models can lead to 

complex simulations. Careful consideration should be given as 

to how many aspects (thermodynamic, electro-chemical, fluid 

dynamic etc), are included in a model and if the increase in 

accuracy is necessary. 

5. Model Discussion

The section to follow outlines the implementation of various 

modelling approaches, including a performance discussion. 

5.1. Linear Model 
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Numerous linear modelling approaches exist and are commonly 

used due to simple implementation and minimal number of 

parameters required. 

5.1.1.  Constant Efficiency – Specific Power Consumption 

Techno-economic studies are commonly done when using linear 

approaches, specifically looking at cost analysis or plant 

economics. However, more technical papers utilise these 

approaches for optimisation and sizing problems [11], the most 

common implementations include using the specific energy 

consumption with units: (kWh/kg). This method assumes a 

constant efficiency regardless of any external factors such as 

temperature and fluctuating loads. A paper discussing the impact 

of hydrogen production on the electrical grid for hydrogen-

powered vehicles utilised the constant efficiency approach [12], 

and another analysed islanded ammonia production [5]. Both 

studies emphasised that this may be an overestimation and a 

conservative approach. 

5.1.2.  Varying Efficiency – Specific Power Consumption 

Electrolysis systems, as it stands, will never reach an overall 

system efficiency of 100%. The linear model discussed prior can 

be seen as a more idealistic approach, utilising purely simple 

theoretical calculations, this could not be further from the truth. 

These approaches neglect the use of varying efficiency as the 

electrolyser’s load changes. Beerbuhl et al. [13] discuss the idea 

quite well. 

In order for an electrolyser to achieve 100% efficiency it has to 

approach the thermodynamic minimum, also known as its HHV 

of 39.39 kWh/kg or 3.54 kWh/Nm3 . This efficiency does not 

follow an intuitive approach, or ”economies of scale” from an 

economic perspective, similar to what most thermal power plant 

efficiencies follow. Figure 2 depicts this idea, where it can be 

seen that at lower loads the specific energy consumption 

(efficiency) of an electrolyser performs better than at full load 

conditions. This makes it attractive for plant operators to run 

their systems at lower levels, whilst still maintaining a 

reasonable output [14]. Optimisations involving non-linear or 

exponential terms lead to very complex problems and are 

computationally expensive, hence surveying of literature 

revealed very few articles utilising this approach [13]. 

Researchers have attempted to approximate this non-linear 

behaviour, through piecewise linear models. Baumhof et al. [15] 

discusses when a more detailed operational electrolyser model is 

necessary, specifically for use in scheduling the electrolyser state 

based on the day ahead electricity price. The paper presents the 

idea of generating a linear piece-wise function of the non-linear 

efficiency curve depicted in Figure 3(b). 

The central idea behind the approach is defining how many 

segments are needed to linearize the efficiency curve in order to 

provide an accurate approximation, comprising a number of 

linear equation segments. As the number of segments increase, 

the accuracy of the model increases. The approximated curve in 

Figure 3(b) consists of two linear piecewise curves. It is 

concluded that an increase in segments greatly improves the 

scheduling accuracy [15]. 

5.1.3. Heating Value and Electrolyser Efficiency 

A similar approach is used by relating efficiency (η𝐸) and the

HHV with the power applied (𝑃𝑎𝑝𝑝) to the electrolyser to

determine the hydrogen output (�̇�𝐻2
), which is also constant

efficiency approach. 

�̇�𝐻2
=

η𝐸𝑃𝑎𝑝𝑝

𝐻𝐻𝑉𝐻2

(𝑘𝑔/ℎ)  (4) 

5.2. Empirical and Semi-Empirical Models 

5.2.1.  Ulleberg 

The most notable modelling approach under this category is the 

work done by Øystein Ulleberg [16]. The model is based on a 

combination of thermodynamics, heat transfer and static-

empirical electro-chemical relationships, it also includes a 

dynamic thermal model. A significant proportion of papers that 

utilise a semi-empirical approach have used Ulleberg’s model. 

The model presented is complex and detailed when compared 

with other approaches, such as purely empirical or linear 

Fig. 2. Partial Load Efficiency Curve [13] 

Fig. 3. Efficiency and Hydrogen Production curve [15] 
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methods, thus requiring extensive knowledge of detailed system 

parameters. Ulleberg has attempted to reduce the number of 

parameters required by the empirical relations. This allows the 

model to be as generic as possible as well as limiting the number 

of experiments that are needed and subsequently the costs 

involved with implementing such a model. 

A fundamental aspect of electrolysers is the current-voltage 

relationship or I-U curve as shown in Figure 4: 

The product of voltage and current produce the power of the 

electrolyser. The cell voltage (𝑈) is calculated as: 

𝑈 = 𝑈𝑟𝑒𝑣 +
𝑟1+𝑟2𝑇

𝐴
𝐼 + 𝑠𝑙𝑜𝑔 (

𝑡1+𝑡2/𝑇+𝑡3/𝑇2

𝐴
𝐼 + 1)     (5) 

The voltage is dependent on the electrode area (𝐴), cell 

temperature (𝑇), reversible cell voltage (𝑈𝑟𝑒𝑣), ohmic resistance

(𝑟) and over-voltage coefficients (𝑠 & 𝑡). Faraday’s Law is the 

main principle behind hydrogen production. According to this 

law, hydrogen production in a stack (𝑚𝐻2
̇ ) is directly

proportional to the transfer rate of electrons at the electrodes, 

which is equivalent to the external electric circuit current (𝐼) . 

This results in Equation 5 with the variables Faraday efficiency 

(𝜂𝐹), Faraday constant (𝐹) and number of cells in a stack (𝜂𝐶):

�̇�𝐻2
= η𝐹 ⋅

𝑛𝑐⋅𝐼

𝑧⋅𝐹
 (6) 

Ulleberg validated the proposed model through experiments over 

a series of days, with positive results. The predicted and 

measured energy demand error was less than 2%. This model is 

appropriate for both Alkaline and PEM electrolysers. 

5.2.2.  Simplified Ulleberg 

A semi-empirical model based on Ulleberg’s model is also 

common [17], [18]. The simplified approach assumes a constant 

temperature, pressure and voltage. This generates an equation 

relating the current applied (𝐼) and Faraday efficiency (𝜂𝐹).

η𝐹 = 96.5 ⋅ 𝑒𝑥𝑝 (
0.09

𝐼
−

75.5

𝐼2 )  (7) 

The parameters in Equation 7 above are determined from the 

empirical parameters discussed in Ulleberg’s paper [16]. The 

Faraday Efficiency is then substituted into Equation 5 to 

determine the hydrogen output. 

5.3. Dynamic Models 

The models discussed up to this point, with the exclusion of the 

work of Ulleberg, have been static models and have not 

necessarily characterised the response an electrolyser may have 

to dynamic power fluctuations, similar to renewable energy 

sources [19]. 

5.3.1. Electronic Circuit 

Researchers have attempted to generate an equivalent circuit, 

Figure 5 depicts a PEM electrolyser, in order to incorporate the 

dynamic profiles associated with renewable energy sources [19]. 

The circuit simulates the electrodes as a resistor-capacitor pair 

with a single resistor modelling the membrane, this is all 

connected in series to a DC voltage source (reversible potential). 

Fig 5 PEM Electrolyser Equivalent Circuit [19] 

The cell voltage (𝑉𝑐𝑒𝑙𝑙) is calculated by summing the cathode

(η𝑎𝑐𝑡,𝑐), membrane (η𝑜ℎ𝑚), anode (η𝑎𝑐𝑡,𝑎) and reversible voltage

(𝐸𝑟𝑒𝑣).

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑟𝑒𝑣 + η𝑎𝑐𝑡,𝑎 + η𝑎𝑐𝑡,𝑐 + η𝑜ℎ𝑚   (8) 

This allows for the previously static current-voltage curve, i.e. in 

Figure 4, to be dynamic, depicted in Figure 6.  

Author [19] proposes an accurate model. Results revealed that 

when a step voltage is applied to the system, a static model 

Fig. 4. Typical U-I Curve for Electrolyser [16] 

Fig. 6. Voltage Response to Step Change [20] 
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produces an error of 15%, whilst the dynamic model achieves 

4%, this is a significant improvement in model accuracy.  

The implementation of such a model is relatively complex and 

requires detailed knowledge of the system, which is not always 

the case. Optimisation problems involving non-linear formulae 

are also not favoured as they are computationally expensive. 

Whilst the ability to accurately track sudden changes in the 

power supplied to the system, as is common with renewable 

energy, is not a very common approach.  

However, a major drawback of this model is its confined 

operating range. Guilbert and Vitale [20] discuss validating the 

parameters used in [19]. It revealed that the values obtained are 

only applicable over a specific current range and should the 

model be applied outside of this region, inaccuracies and 

unreliability would become prevalent. This is due to the 

dynamics of the system changing as operating conditions 

change. The proposed model was regarded as being an accurate 

and appropriate method to emulate an electrolyser as a 

replacement for having to conduct an experiment. 

6. Discussion and Model Selection

6.1. Discussion 

It is clear that there are numerous modelling methods with 

varying degrees of complexity. In order to better summarise 

and condense the information presented, a discussion of the 

results follow. 

Linear modelling is a simple approach to approximate 

hydrogen production. It requires very few parameters, whether 

assuming a constant specific energy consumption or assuming 

the power supplied to the electrolyser is proportional to the 

rated hydrogen output. This method is beneficial in optimisation 

problems as it is a simple linear approximation, thus being 

computationally inexpensive. It is also best suited to techno- 

economic research areas due to it requiring very few details 

about the electrolyser and its parameters, which is common 

when conducting feasibility studies. 

The varying efficiency model is a modified linear model that 

incorporates the non-linear efficiency curve of an electrolyser 

through piece-wise approximations. This allows for the 

efficiency curves seen in Figures 2 and 3 to be included in the 

model implementation. Whilst the linear models discussed are 

simple and computationally inexpensive, they are static models, 

which do not capture the change in parameters as operating 

conditions change. For example, temperature greatly affects cell 

voltage, which subsequently affects efficiency and hydrogen 

output. 

Semi-empirical and empirical modelling present a more 

detailed approach that utilises theoretical aspects and 

experimental data to model an electrolyser. This greatly 

improves the accuracy of the electrolyser model. The work of 

Ulleberg is a very popular method together with various models 

based on his work. These models are relatively simple, whilst 

still being detailed enough to incorporate specific parameters, 

such as operating temperatures and voltages. 

Dynamic modelling is a complex and accurate approach, it 

incorporates aspects that are vital when coupled to renewable 

energy sources such as the system response to sudden changes 

in current and/or voltage. This approach is at a low/detailed 

system level, in order to include this flexibility in a linear or 

semi-empirical or empirical model, the addition of load range 

and ramp rate parameters is necessary. 

6.2. Model Selection 

Selecting the most appropriate modelling approach is purely 

dependent on the context in which the model is being 

implemented.  

Linear models are simple and easy to implement, especially 

when very few details regarding the electrolyser are known, this 

makes it suitable for economic type studies (equipment costs, 

cost of capital etc) or high level feasibility studies that do not 

require high levels of accuracy. Optimisation problems benefit 

from more simple models as simulation times are reduced when 

compared with non-linear models.  

Semi-empirical and empirical modelling provide a higher level 

of detail, compared to linear models. They require fewer 

parameters relative to dynamic and physical models and are still 

very accurate. The work of Ulleberg is a good approach if a semi-

empirical model were to be employed. Numerous optimisation 

problems, as well as techno-economic papers, have utilised such 

a model. 

Dynamic and physical modelling is the most complex. They are 

difficult to implement as they require numerous parameters that 

need to be determined empirically and employ multiple relations 

and equations to fully describe the system. This makes it difficult 

to implement for optimisation problems, particularly more 

complex types, such as multi-objective optimisation problems.   

7. Conclusion

This paper offers a comprehensive overview of electrolyser 

modelling, encompassing both alkaline and proton exchange 

membrane electrolysers. The study devolves into distinct 

models, exploring key aspects of each. Additionally, a 

comparison is made among various methods, considering factors 

like complexity, implementation, and accuracy. 

The modelling methods discussed are classified into four 
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different categories, linear, semi-empirical, empirical and 

dynamic. Within each category, several models found in the 

literature were presented and evaluated. 

Linear methods emerge as the simplest to implement requiring 

minimal system parameters and are easily scalable. 

Conversely, empirical and semi-empirical modelling represents 

a significant step up and is used in more detailed analyses. 

Careful consideration should be given to model selection, 

taking into account the aspects discussed in this paper. 

Although not exhaustive, this paper significantly improves 

the understanding of the diverse models available in the 

literature. While it does not analyse intricate system 

parameters such as electrode area or electrolyte concentrations, 

it serves as a guide and initial step to simulating the system. 
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Abstract: An enormous amount of waste-activated sludge 

(WAS) and food waste (FW) is generated worldwide. Most of 

this waste is discarded in landfills, where it undergoes 

uncontrolled anaerobic digestion (AD), which emits excessive 

amounts of greenhouse gases, (methane and carbon dioxide), 

thereby contributing to global warming. Controlled digestion of 

WAS and FW is key for organic waste management with a 

positive impact on the environment and economy. In South 

Africa (SA) there is little uptake of biogas technology for WAS 

and FW management due to little research on biogas potential 

at small to large scale. In the current study WAS and FW was 

treated in both mono-digestion and co-digestion at mesophilic 

temperatures on a pilot scale, aided by a solar system. A 

complete-mix biogas pilot plant (VUT-1000C) was designed, 

constructed and commissioned. The materials used for 

constructing the pilot plant were sourced locally, including the 

solar geyser, to prove the applicability of the AD technology in 

South Africa. The biogas produced was converted to electricity 

using a generator. A power balance was then performed over 

the biogas plant for each treated feedstock. Up to 2.3 kWh 

power output was from 1 400 L of biogas produced during FW 

mono-digestion and co-digestion with WAS at an organic 

loading rate (OLR) of 1.6 kgVS/m
3
/day. Up to 0.6 kWh of 

power was produced from 150 L of biogas during WAS mono-

digestion indicating that the plant required 68% of the output 

for input. In the co-digestion of WAS with FW and mono-

digestion of FW, the power output to input ratio was higher 

compared to WAS-only digestion. Great volumes of biogas as 

renewable energy are being lost in South Africa due to the lack 

of anaerobic technology uptake. Furthermore, the study has 

shown that biogas technology is readily available for South 

Africans as the designed biogas plant was very effective in 

waste-to-energy conversion. 

Keywords: Anaerobic co-digestion; Biogas; Electricity; Food 

waste; Waste-activated sludge. 

1. Introduction

There is an enormous opportunity for the recovery of energy 

and nutrients, water reclamation and mitigation of climate 

change through the effective treatment of waste-activated 

sludge (WAS), primary sludge and secondary sludge. WAS is 

the sludge that amasses at the bottom of the primary settling 

tank, and is an excess quantity of microbes that must be 

removed from the activated sludge treatment process to keep 

the biological system in balance thereby producing a waste 

product. Currently, WAS treatment and disposal account for up 

to 50% of the total operation cost and 40% of the total 

greenhouse gas emissions [1]. Anaerobic digestion (AD) is 

usually preferred for WAS treatment since it is more 

economical compared to other existing technologies [2]. AD 

can transform the sludge organic matter into biomethane, 

reduce the final amount of sludge solids, destroy most 

pathogens present in sludge, limit odour problems and produce 

energy. Thus, AD optimises treatment costs, reduces the 

environmental footprint of the plant, and plays an integral part 

in modern municipal wastewater treatment processes [3], [4]. 

The biogas potential of municipal waste-water treatment plants 

(WWTPs) can be enhanced in several ways. This technology 

can be enhanced by being coupled with other renewable energy 

sources such as solar for heating the biodigesters to mesophilic 

temperatures and by the introduction of other organic-rich 

waste streams through co-digestion. With increased biogas 

potential, the WWTP can become a renewable energy producer. 

South Africa produces 28 million tons/year (77 million kg/day) 
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of food, and a third of it is discarded as waste [5]. Current 

methods of organic municipal waste disposal are incineration, 

landfills, composting and anaerobic digestion. Incineration and 

composting require energy, while landfilling has been 

considered the most practical and cheapest disposal method. 

However, landfills are filling up quickly, creating the need for 

more sites farther away from waste generation, thereby 

increasing costs. More than 50% of the waste disposed of in 

landfills rots under uncontrolled anaerobic conditions, releasing 

landfill gas into the atmosphere and leachate into underground 

water [6]–[8]. Landfill gas, also known as biogas, comprises 

primarily 55 – 70% methane, 30 – 45% carbon dioxide, trace 

amounts of hydrogen sulphide (0-2000 ppm), moisture 

(depending on temperature), and siloxanes [9]. Methane is 25 

times more potent than carbon dioxide as a greenhouse gas. 

Hydrogen sulphide produces bad and unhealthy smells in the 

area. The disposal of organic waste in landfills contributes to 

4.3% of South Africa’s greenhouse gas emissions. Throughout 

the food supply chain to landfill, greenhouse gas emissions 

range between 2.8 and 4.14 t CO2 per tonne of FW [5]. The 

national waste sector landfills contributed 18 773 Gg CO2 eq to 

the national methane emissions in 2010 [7].  

The controlled anaerobic co-digestion (AcD) of WAS with 

food waste (FW) is considered a key element in organic waste 

management due to its positive impact on the environment, 

economy, and energy (Kang and Yuan, 2017). AcD improves 

the carbon-to-nitrogen (C/N) balance of the mixture, obtaining 

higher biogas and methane yields and diluting potential toxic 

sub-stances [10]. This treatment method reduces the emissions 

of greenhouse gases going into the atmosphere while producing 

carbon-neutral renewable energy and biofertiliser. Methane, the 

main constituent, constitutes up to 99% of natural gas. Methane 

has a calorific value of 36 MJ/m
3
; thus, biogas has a calorific 

value of 22 MJ/m
3
 at 60% methane composition [11]. The 

calorific value of biogas can be improved by biogas 

purification. Biogas can be used for cooking, generating 

electricity in combined heat and power plants (CHP), and as a 

vehicular fuel. One m
3
 of biogas can produce up to 2.1 kW of 

electricity, assuming a mechanical efficiency of 35% for the 

generator.  

The generation of electricity from biogas is one of the most 

dominant future renewable energy sources because continuous 

power generation from organic waste can be guaranteed [12]. 

South Africa’s primary energy source is coal, which is 

responsible for carbon dioxide emissions contributing to 12% 

of greenhouse gas emissions globally. According to Statistics 

South Africa [13], almost 90% of 236 TWh of electricity is 

generated in coal-fired power stations, 5% from nuclear, 0.5% 

from hydroelectricity, 2.3% from natural gas, 0.01% from wind 

and 1.3% from pumped storage schemes [13]. The national 

landfill methane emission equals 101 TWh of electricity, half 

of South Africa’s energy generation. 3 GWh can be generated 

from the estimated national 9 Mt of FW (the amount of FW 

could be understated due to the lack of sufficient records), 

turning on 522 million 6W light bulbs. Power generated from 

biogas is carbon-neutral and thus environmentally friendly. In 

addition to the benefits mentioned, large biogas installations in 

South Africa are located at municipal wastewater treatment 

plants, and the digesters are often oversized and/or 

underutilised.  

The current study aimed to (i) determine the effect of various 

WAS:FW mixing ratios on biogas production at the laboratory 

scale, (ii) optimise the pilot operation of the co-digestion of 

WAS with FW at the optimum mixing ratio, (iii) increase the 

organic loading rate during the pilot co-digestion of WAS and 

FW, (iv) generate electricity from the biogas produced from the 

pilot-scale anaerobic reactor, (iv) carry out power analysis on 

the pilot plant, and (v) estimate local and national biogas power 

potentials based on the current volumes of food waste and 

sludge produced in South Africa. 

2. Materials

A tank made from linear low-density polyethylene (LLDPE) 

(1000 L), clear pipe of 8 mm internal diameter, high-density 

polyethylene (HDPE) pipe, polyvinyl chloride (PVC) tarpaulin, 

fittings, solar geyser, insulation material, biogas compressor, 

submersible grinder pump, pH meter (Hanna model: HI 9813-

5), slaked lime, and plexiglass floating drum for the 

construction of a complete-mix biogas pilot plant were 

purchased at local hardware stores in Vanderbijlpark, South 

Africa. A 1.5 kW biogas generator, handheld biogas analyser, 

Ritter biogas meter, and ambient anaerobic digester (1 m
3
) were 

purchased from Puxin Technology in China. Cow dung (CD) 

was sourced from a local farm in Vanderbijlpark. FW (mainly 

rice, slap chips, buns, bread, porridge, grease, raw dough, 

chicken, meat, vegetables, and fruits) was collected from a 

local restaurant, Stonehaven on Vaa; Vanderbijlpark. WAS 

containing sewage sludge from the primary and secondary 

settlers was collected from the Ekurhuleni Water Care 

Company (ERWAT) wastewater treatment plant based in 

Midvaal, South Africa. 

2.1. Pilot scale digester setup 

A complete-mix (VUT-1000C) anaerobic digester operated at a 

controlled temperature of 37 
o
C was used. VUT-1000C was 

designed and constructed from a 1000 ℓ vertical LLDPE tank 

with a working volume of 800 ℓ. A gas holder was made from 

PVC tarpaulin, and biogas was measured using a flow meter. 
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The substrate was mixed using a submersible grinder pump. 

The digester was heated using a solar geyser equipped with a 

temperature controller. A thermocouple was inserted inside the 

digester and connected to the temperature controller, which 

turned the hot water circulation pump on and off to maintain 

the desired digester temperature. The digester was insulated 

from cold winds. Produced biogas was stored in a 1000 ℓ 

tarpaulin biogas bag. An 18 W biogas compressor was used to 

extract biogas from the biogas bag to supply downstream 

processes. A 1.5 kWh generator was used for electricity 

generation with a conversion efficiency of 22%. The 

experimental setup is outlined in Fig. 1. 

Fig. 1: Schematic representation of VUT-1000C solar 

heated biogas pilot plant coupled to an electricity generator. 

2.2. Biochemical methane potential 

Laboratory biochemical methane potential (BMP) tests were 

performed to evaluate the effect of various mixing ratios on 

biogas production. The BMP test work consisted of 6 reactor 

bottles with 2 L capacity and 1.7 L working volume. The 

inoculum-to-substrate ratio was 2:1 based on volume. The 

sludge to FW ratios were prepared as follows: 100:0, 80:20, 

60:40, 40:60, 20:80 and 0:100, respectively, by organic loading 

rate at a constant organic loading rate of 2 kgVS/m
3
. The 

digesters were incubated in a heated water bath and set to 38 
o
C 

to maintain mesophilic temperatures. Biogas production was 

measured and monitored periodically using water displacement 

collectors. All experiments were run in triplicate. Each reactor 

bottle was purged with N2 (99.99%) for 3 min to remove 

oxygen, then sealed with a valve. A buffering agent, Sodium 

Hydrogen Carbonate, was added in the appropriate measure to 

maintain favourable pH levels to provide adequate buffering 

capacity.  

2.3. Co-digestion of sludge with fw at the pilot scale 

The optimum WAS:FW ratio obtained during the laboratory 

BMP test was implemented at a pilot scale using the VUT-

1000C pilot plant at 0.8 kgVS/m
3
/day. The pilot plant was 

operated using a semi-continuous feeding mode. FW collected 

was sorted and blended with water using a food waste disposer 

grinding the material to fine particle size. The solid 

concentration of the prepared mixtures was then determined. 

The blended FW in bulk was stored in a cool and shaded area 

near the digester. Once optimised the organic loading rate was 

then increased from 0.8 to 1.6 kgVS/m
3
/day.

2.4. Sample analysis 

The total solid (TS) and volatile solid (VS) concentrations of 

the inoculum and substrates were determined by drying at 105 
o
C to constant weight to determine TS% and then igniting at 

550 
o
C to determine VS% [14]. An ignition test was performed 

to monitor methane presence. Digestate pH was measured using 

a pH meter (Hanna model: HI 9813-5). Critical parameters such 

as biogas volume, digester temperature, and digestate pH were 

measured and monitored daily during operation. 

3. Results and discussion

3.1. Feedstock characterisation 

The physical characteristics of the obtained FW and WAS are 

given in Table 1. The physical-chemical characteristics 

influence the performance of AD by affecting the methane 

yield and process stability, thus indicating the degree of 

biodegradability [15]. Both WAS and FW had high moisture 

contents, 93% and 87%, respectively. The average volatile 

solids (VS%) content obtained for WAS and FW was 4.69% 

and 12.35%, respectively. These are similar findings to 

Kuczman et al. [16] who obtained 13% for FW and Zahan et al. 

[17] obtained 3.13% for SS.

The VS/TS ratio is an indicator for evaluating the suitability of 

a substrate for biogas production; substrates with VS/TS higher 

than 80% are considered great candidates to be anaerobic 

digestion feedstock [18]–[20] In this study, VS/TS for FW was 

found to be 95%, an amount similar to that of Zhang et al. [18] 

of 94%. These high values indicated that the FW was rich in 

biodegradable matter and thus excellent for biodegradation. 

The VS/TS ratio for the WAS was 67%, which demonstrated 

that the fraction of organic matter was not too far from the 

suitable range as substances with values below 17.4 to 10% are 

considered inorganic [16]. Both the WAS and FW had an initial 

acidic pH value of 6.3 and 5, respectively. 

Table 1: Characteristics of WAS and FW 

Parameter WAS FW 

Moisture content (MC, %) 93 87 

Total solids (TS, %) 7 13 
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Volatile solids (VS, %) 4.69 12.35 

VS/TS (%) 67 95 

pH 6.3 5 

3.2. BMP test on the effect of co-digestion of WAS and 

FW on biogas production 

BMP tests were performed to evaluate the effect of various 

WAS:FW mixing ratios on biogas production. Fig. 2 shows the 

hourly and cumulative biogas production of the different ratios 

during the first 20 hours of digestion. Mono-digestion of WAS 

produced the lowest amount of biogas (160 ml) while mono-

digestion of FW produced the highest (680 ml). The results 

indicate that biogas production increased with increasing FW 

composition. 100% WAS plateaued immediately after 9 hours 

while 100% FW only plateaued after 18 hours which is twice 

the time and 3 times the biogas production. Rapid biogas 

production began within the first 8-9 hours and thereafter 

started to plateau concerning the composition of FW in the 

mixture. The addition of FW to WAS immediately enhanced 

biogas production by 40% when as little as 20% FW to 80% 

WAS was added, and then increased by 100% with the addition 

of 40% FW.. The only drawback with the addition of more FW 

is the lack of digestate buffering capacity which required the 

addition of a buffering agent, consequently increasing co-

digestion costs.  

Fig. 2: Hourly (a) and cumulative (b) biogas production of 

the different WAS:FW mixing ratios. 

3.3. Pilot codigestion of WAS with FW 

Fig. 3 shows the daily biogas production of the mono-digestion 

of sludge and the codigestion of sludge with FW after 95 days 

of digestion in the solar heated pilot scale digester. Upon 

stabilisation of the digester, the biogas production for mono-

digestion averaged 150 ℓ/day while co-digestion at 

60WAS:40FW produced 650 ℓ/day, which is 4.3 times higher 

than that of mono-digestion. A lag phase can be observed 

between days 26 and 29 during the transition from mono-

digestion to co-digestion. Mono-digestion took 5 days to reach 

stable conditions while co-digestion took 10 days. The digestate 

pH stabilised after 9 days for both phases (Fig. 4a). The 

digester temperature was also stable averaging 35 
o
C (Fig. 4b). 

This indicated the reliability of the solar geyser for digester 

heating. Hallaji et al., [21] also reported improvement when co-

digesting WAS with FW. They assessed the activity of the main 

enzymes hydrolyzing organic matter, protease and cellulase, in 

AD. According to their findings it was indicated that 

codigestion of WAS with mixed fruit waste and cheese whey 

enhances the activity of these enzymes by 22 and 9%, 

respectively. Using a mixing ratio of 85:15 for WAS:FW, their 

cumulative methane production increased by 31% as compared 

to WAS monodigestion. Additionally chemical oxygen demand 

(COD) and VS of the feed mixture improved by 9 and 7%, 

respectively. Up to 270% enhanced biogas production during 

the codigestion of sewage sludge with 5% food waste, cheese 

whey and olive mill wastewater (FCO) has been reported [22]. 

Fig. 3: Biogas production rate during the anaerobic 

codigestion of municipal waste-water sludge with food 

waste  
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Fig. 4: (a) Anaerobic digester pH and (b) digester 

temperature during the anaerobic codigestion of municipal 

waste-water sludge with food waste 

Optimisation of the pilot anaerobic codigestion of sludge with 

food waste at a mixing ratio of 60% WAS to 40% FS was 

performed. In this section, the initial organic loading rate 

during co-digestion at 0.8 kgVS/m
3
/day was increased to 1.6 

kgVS/m
3
/day. Fig. 5 outlines the daily biogas production rate 

during mono-digestion of sludge at 1.2 kgVS/m
3
/day which 

stabilised at an average biogas production rate of 150 ℓ/day. 

Upon co-digestion of WAS with FW at 60WAS:40FW biogas 

production rate increased to an average of 650 ℓ/day at a 

combined OLR of 0.8 kgVS/m
3
/day. Digestion at the new OLR 

also took 10 days to stabilise and then remained stable for the 

remainder of the digestion period to an average biogas 

production rate of 1400 ℓ/day, which is 2 times that at 0.8 

kgVS/m
3
/day. By doubling the feed OLR, biogas production 

also doubled and thus increased by more than 9 times that of 

mono-digestion. The digestate pH remained stable throughout 

the digestion period and within the optimum range. Similarly, 

the digester temperature was also stable, averaging 35 
o
C. 

Fig. 5: Biogas production rate during the anaerobic 

codigestion of waste-activated sludge with food waste at 

different OLRs.  

3.4. Biogas conversion to electricity 

An electricity biogas generator connected to a combustion 

biogas engine was used to generate electricity. A specific 

volume (1000 L) of biogas was used to perform the test work, 

and a total of 2.3 kW was produced. The electrical output of the 

engine was 220 V, 50Hz, and 1.8 kWh. A maximum of 1.8 

kWh was generated with an overall conversion efficiency of 

22%. The biogas consumption of the generator averaged 650 

L/hour. On a national scale, this electricity can light up to 300 6 

W energy-saving light bulbs for an hour. Furthermore, in a 

rural setting with no electricity, this biogas pilot plant can 

provide electricity and allow the users to perform short-term 

energy-requiring tasks. By running the generator, a family 

would have a total of 2.3 kW for 1 hour and 30 minutes (1.5 – 

1.8 kWh) of electricity per day from 1000 L of biogas. From 2 

kWh of electricity, the family can perform one of the following 

tasks or a balanced mixture of these tasks for their living 

requirements: microwave (700 W) 32 meals, toast (800 W) 48 

slices of bread, vacuum clean (1400 W) 16 rooms, run three 

laundry loads (800 W), iron (150 W) full laundry, bake one 

cake (1300 W), blend food (400 W), charge devices (36 W) and 

drill (650 W) and grind (650 W) for 3 hours. 

3.4.1. Power balance for biogas production with different 

substrates 

The power balance considers the energy input to run the biogas 

pilot plant and compares this input with the power output. The 

plant's power input requirements when operating on FW, WAS, 

and co-digestion of WAS with FW at 0.8 and 1.6 kgVS/m
3
/day 

(60% WAS: 40% FW) were compared (Table 2). Standard to 

all operations, the plant temperature controllers used in this 

plant were operated continuously throughout the day and 

consumed a total of 0.024 kWh, which are the lowest power-

consuming components of the plant. The two highest power-
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consuming components of the plant were the food blender and 

the digestate circulation pump, both consumed a combined 1.14 

kWh during a day’s cycle. The hot water circulation pump ran 

continuously at start-up for two days, and then it would turn off 

when the set digester temperature was reached; it then ran for 

approximately 3 hours in the morning. On average, the hot 

water circulation pump used 0.024 kWh daily.  

When running the generator, the biogas blower was used to 

pressurise the biogas, consuming 0.032 kWh. The total power 

input to run the entire biogas pilot plant for FW and WAS: FW 

was 1.22 kWh. For running WAS as the mono-substrate, 1.16 

kWh power was required to run the plant. Upon evaluation of 

the power output of 2.3 kWh for FW and co-digestion at 1.6 

kgVS/m
3
/day, the biogas plant required 53% of its power 

output, 1.8 kWh for WAS:FW at 0.8 kgVS/m
3
/day required 

68%, and 0.6 kWh for WAS mono-digestion obtained 193% 

power consumption.  

Table 2: Power consumption of equipment used in biogas 

production and biogas use 

Componen

t 

Powe

r 

rating 

(kW) 

Hours 

runnin

g per 

day 

Usage 

(kWh) 
Usage (kWh) 

VUT-

1000C 

Co-

digestion
WAS 

Monodigestion

Digestate 

circulation 

pump 0.18 6 1.080 1.080 

Hot water 

circulation 

pump 0.008 3 0.024 0.024 

Solar geyser 

water level 

controller 0.005 3 0.015 0.015 

Hot water 

circulation 

controller 0.003 3 0.009 0.009 

Food 

blender 0.373 0.16 0.060 

Biogas 

blower 0.016 2 0.032 0.032 

Total 1.220 1.160 

These results may give guidance to the use of certain 

equipment in the biogas plant considering the plant's overall 

power balance. The contribution of the equipment used in the 

biogas plant to the AD process and biogas potential should be 

considered. Ultimately decisions regarding the final application 

of the biogas for either ignition in an open flame or for internal 

combustion may also be evaluated taking into account the 

conversion efficiency of each. Lastly, a combination of 

renewable energies such as a solar-heating promise to assist 

another renewable energy technology to reach its full potential. 

4. Conclusions

Waste-activated sludge (WAS) has the potential for biogas 

production and was successfully digested as the mono-

substrate. However, co-digestion of WAS with food waste 

(FW) significantly improved biogas production by a factor of 4 

at a mixing ratio of 60% WAS and 40% FW. An increase in 

organic loading rate during co-digestion of WAS with FW at 

the pilot scale enhanced biogas production by a factor of 9 

compared to WAS mono-digestion. The maximum daily biogas 

production during co-digestion at 0.8 and 1.6 kgVS/m
3
/day was 

650 and 1400 ℓ/day, respectively. No buffering agents were 

required during co-digestion at the pilot scale as the digester 

proved to have sufficient buffering capacity. Power analysis 

performed over the pilot digester showed that when treating 

WAS only the pilot plant requires additional power to support 

the plant obtaining 193% power consumption, while for 

WAS:FW co-digestion at 1.6 kgVS/m
3
/day it requires 53%, and 

68% WAS:FW at 0.8 kgVS/m
3
/day. This shows that AD is 

potentially a net positive energy-producing technology. 

Scenarios for South Africa, ERWAT and Stonehaven on Vaal 

show the current lost potential for renewable energy as a result 

of the lack of biogas technology uptake. The novelty of a solar-

heated digester was able to maintain mesophilic digester 

temperatures throughout digestion. 
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