

Contribution ID: 274

Type: Oral Presentation

Nuclear Orientation Thermometry using the UCT Dilution Refrigerator

Wednesday, 5 July 2023 11:40 (20 minutes)

The development of a Nuclear Orientation (NO) thermometer system for use at the University of Cape Town is essential to address the significant challenge in the accurate measurements at ultra-low temperatures (down to 8mK). A $^{60}CoCo(hcp)$ gamma-ray thermometry source was irradiated using the NECSA SAFARI-1 research reactor for 6 minutes and a preliminary activity value of 1.3 MBq was achieved. The activity of this source has been validated using an absolute gamma-ray coincidence technique and verified using a well-type ionizing chamber. Preliminary temperature measurements were taken by placing the ^{60}Co source within the University of Cape Town Department of Physics dilution refrigerator using a vertical sample holder and measuring the anisotropy of the radiation at a 90 $^{\circ}$ angle using a Sodium Iodide (NaI) scintillation detector. These results were promising, but inconclusive, prompting a second set of measurements. Modifications were made to the experimental set up by re-designing the sample holder to hold the source horizontally and take measurements at 0 $^{\circ}$ angle along the c-axis. A Lanthanum Bromide ($LaBr_3$) scintillation detector was also used to measure the radiation at temperatures ranging from 10 mK to 100 mK. These experimental improvements provided more accurate and conclusive results.

Apply to be considered for a student; award (Yes / No)?

Yes

Level for award; (Hons, MSc, PhD, N/A)?

MSc

Primary author: Mr NTOLOSI, Yanga (NMISA)

Co-authors: Dr PETERSON, Steve (Department of Physics, University of Cape Town); BLUMENTHAL, Mark

(University of Cape Town)

Presenter: Mr NTOLOSI, Yanga (NMISA)

Session Classification: Applied Physics

Track Classification: Track F - Applied Physics