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Machine Learning (ML) in High Energy Physics
After the discovery of the Higgs Boson there is an effort to exploit the full physics potential of the LHC and its upgrade HL-
LHC which will increase the luminosity by a factor of 5 allowing us to probe the Standard Model and search for new 
particles. The upgrade will also increase the data density and processing complexity. Therefore, the computing 
requirements will not be met without significant R&D to ML methods in particle physics to perform these tasks

Applications of ML algorithms in HEP: 
• event and particle identification 
• reconstruction 
• pile-up suppression
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Deep Learning in High Energy Physics
ML Algorithms in HEP: Boosted Decision Trees (BDTs) and Neural Networks (NN) 
Deep learning is also used and its full potential is shown when working on low level detector data 

Commonly used DNNs used in HEP: 
• convolutional neural networks (CNN) - data is 

interpreted as images 
• recurrent neural networks (RNN) - measurements 

and reconstructed objects can be viewed as 
sequences

Traditional Deep Learning methods causes information to be lost due to their representation of 
the data

The signals from the detector are heterogeneous in nature due to the different 
measurements performed by the components of the detector and its irregular geometry. 
This causes the data from the experiment to be sparse across space and time. 

Graph-based representations and GNN architectures have shown substantial promise for a variety of 
particle physics tasks
In some cases have demonstrated better scaling properties, reduced resource utilisation, and more 
efficient data representations compared to traditional methods. 
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Graph Neural Networks
Data from the detector better 
represented as unordered set that 
have relationships which 
represent the interactions 
between them which makes the 
data better represented as a 
graph.

A graph G = (u, V, E) consists of a set of Nv nodes V, 
and a set of Ne edges E.
The graph, nodes and edges have their own 
features. An adjacency matrix defines the edges that 
connect pairs of nodes

Message Passing
• The information received from the nearest neighbours through the edges 

in the graph are used to update the node features.
•  The node and edge level outputs are each aggregated in order to compute 

graph-level information in the global block i.e. the graph itself. 
• The output of the graph network (GN) is the updated graph that has 

updated edge, node, and graph features.

The features can be updated either spatially or across spatio-temporal steps 
where the aggregation and updates share weights with previous time steps.
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The Graph Network (GN) blocks are combined to make a Graph Neural Network. 



Graph Neural Networks in High Energy Physics

MLPF  
GNN used to reconstruct candidate particles in events with a large 
number of pile up collisions 

GRAVNET and GARNET

Particle Flow reconstructionIn HEP the majority of the graph-based learning algorithms focus on 
reconstruction and identification tasks.  

For reconstruction the workflow process begins with an unordered set of 
data points which could be tracker hit spatial points or particle-level 
kinematic features  

The edges are defined either before the GNN or during the learning 
algorithm. The GNNs produce graph-, edge-, or node-level predictions. In 
the case of particle flow reconstruction, node-level predictions are 
made. 

A set of detector inputs are used for the event and adopt a 
message passing approach for reconstructing the PF 
candidates. These reconstructed particles are compared to 
true values to test the prediction 

Underperforms with neutral hadrons and photons in the 
high transverse momentum region due to pileup  

Could be resolved with spatiotemporal GNNs by 
taking the temporal correlation into account 
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Spatiotemporal-Graph Neural Networks in Air Quality 
Systems

Station Code Longitude Latitude Altitude (m)

Basel BAS 7.58 47.54 316

Bern BER 7.44 46.95 536
Dubendor

f
DUE 8.61 47.40 432

Harkingen HAE 7.82 47.31 431
Lugano LUG 8.96 46.01 280

Magadino MAG 8.93 46.16 203
Payerne PAY 6.94 46.81 489

Rigi RIG 8.46 47.07 1,031
Zurich ZUE 8.53 47.38 409

Demonstrate the effectiveness of ST-GNNs through the use of air 
quality systems by combining GNNs with RNNs. 
GNNs capture the spatial correlations 
RNNs capture the temporal correlations

Graph Construction/representation (G) 
Graph - network of air monitoring stations

Nodes - air monitoring stations

Edges - Interactions between the air monitoring stations

Node Features P 
Meteorological features and pollutant concentration data, location 
coordinates, altitude


Edge Features Q 
Non-stationary meteorological features, advection coefficient, distance 
and direction between other nodes X - feature we want to predict
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Experiment Compared Models

LSTM

GRU

nodesFC
-GRU

MLP

Datasets

Constructed a 6 year 1 Jan 2016 - 31 Dec 2021 dataset which covers daily measurements 
made by 9 air monitoring stations 

The dataset was divided into a train/validation/test split to examine the model’s forecasting 
ability in a general long-term setting

Train Validation Test
1 Jan 2016 - 31 Dec 2019 1 Jan 2020 - 31 Dec 2020 1 Jan 2021 - 31 Dec 2021

Experimental Settings

Experiment was ran on 1.8 GHz Dual-Core Intel Core i5 
Made use of the PyTorch_Geometric library and its dependencies 
All compared models are given identical inputs as well as domain knowledge 

Trained using Adam optimiser for 200 epochs 
Learning rate and Weight decay are both 0.0005 

Evaluation of the model performance using the train and test loss to show generalisation ability 
Mean absolute error and Root Mean Squared Error to examine the prediction accuracy 
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Results
Metric MLP LSTM GRU NodesFC-

GRU ST-GNN

Train Loss 0.0355 0.0295 0.0283 0.0212 0.0236

Validation 
Loss 0.0445 0.0342 0.0335 0.0258 0.0264

Test Loss 0.0571 0.0396 0.0392 0.0384 0.0301

RMSE 2.3487 2.0032 1.9976 1.9821 1.8420

MAE 1.6709 1.5340 1.5128 1.4558 1.3338

• The nodesFC-GRU and ST-GNN outperform the 
MLP, LSTM, GRU models.


• NodesFC-GRU suffers from overfitting

• ST-GNN is better at generalising - shown by how 

close the different loss values are

• ST-GNN outperforms all the other models with its 

prediction ability shown by the RMSE and MAE
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Conclusion and Future Work

Demonstrated the effectiveness of spatiotemporal graph neural networks in air quality 
systems. This was done to show that it could be used in particle physics tasks in predictive 
tasks such as physics processes and event reconstruction in which the time dimension plays a 
crucial role. 

The next step is to apply this model on ATLAS Run 3 Datasets  

There will be ongoing improvement to this model so that it would be better suited for ATLAS 
data
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