A Physics Approach to Ecological Networks

Prof Alan Matthews School of Chemistry and Physics University of KwaZulu-Natal

Ecosystem

Environment +

- Ecology
- Biology
- Chemistry
- Geology
- Geography
- Physics!

Trophic Transfer and Entropy

Entropy (Information Theory)

- Measure of order $H = -\sum p_{ij} \log_2 p_{ij}$
- Probability of energy through link (*ij*)

$$p_{ij} = \frac{t_{ij}}{\sum t_{ij}}$$

Python: Networkx

Linear Inverse Model (LIM)

- Constraints (equalities): $\sum a_{ik}x_k = 0$ (per node *i*)
- Inequalities: $x_k > 0$ for all edges (negative flows are unphysical)
- Solve with matrix methods (Ax = 0 and inequalities)
- Gives basis:
 - Set of basis flows (represented as vectors)
 - Each basis flow is a solution
 - Flow solution = weighted sum of basis flows
- n m free variables (+1 for global scale): 12 in this example

Singular Value Decomposition

- Orthonormal basis, very nice, but ...
- Many negative flows
 - Plants eat herbivores
 - Herbivores eat carnivores
 - Carnivores rise from the dead
 - Heat recovered
- Must exclude negative flows
- (Same with QR decomposition)

Reduced Row-Echelon Form

- Simpler basis (simple cycles), but ...
- Still has negative flows
- As for other LIM, basis not interpretable (no meaning)

Set of 12 basis flows

"Physics" Approach

- Avoid negative flows (unphysical, biologically implausible)
- Mechanisms (respiration, mortality)
- Conservation of energy
- Try iterative algorithm (only positive flows)

Iterative Solution

Iteration needed for cycles

Solution for equal diet fractions

CONCLUSION

- Iterative method: No negative flows
- Diet fraction is interpretable
- Can specify biomass, respiration, mortality
 - Also interpretable

Ecosystem structure: many interesting questions

• Ecological networks can be applied to other systems