Increasing the location rate of Positron Emission Particle Tracking (PEPT) measurements

Presenter: Rayhaan Perin

Coauthors: Katie Cole, Jonathan Shock, Stephen W. Peterson

Department of Physics, University of Cape Town

DEPARTMENT OF
PHYSICS
UNIVERSITY OF CAPE TOWN

$$
\text { SAIP, } 5 \text { July, } 2023
$$

Overview of PEPT

See Parker et al.; Nicușan and Windows-Yule

Data generation

Figure 1: Siemens ECAT HR++ PET scanner at PEPT Cape Town.

Figure 2: GATE simulation of the HR++ PET camera as seen in Figure 2.

The research problem

(a)

1. Simulation timestamps

Simulation times $=[0.00,0.11,0.33,0.82,1.01,1.25, \ldots] \mathrm{ms}$
2. Listmode timestamps

Millisecond times $=[0.00,0.00,0.00,0.00,1.00,1.00,1.00, \ldots] \mathrm{ms}$
3. Interpolated timestamps

Millisecond times $=[0.00,0.00,0.00,0.00,1.00,1.00,1.00, \ldots] \mathrm{ms}$

Interpolated times $=[0.00,0.25,0.50,0.70,1.00,1.25,1.50, \ldots] \mathrm{ms}$
(b)

Figure 3: Illustration (a) shows the interpolation algorithm and (b) shows the timestamps of the simulation, millisecond and interpolation LORs.

Timestamp difference

Figure 4: The temporal error, $\Delta(t)$, for both the millisecond and the interpolated timestamps.

- The following fit results are for $\Delta(t)_{i, s}$
- $\mu=(-7.3 \pm 1.0) \times 10^{-4} \mathrm{~ms}, \beta=0.02014 \pm 0.00014 \mathrm{~ms}$
- Reduced $\chi^{2}=0.28, L=377 \pm 19 \mathrm{kHz}$

Random walk model

- The $\gamma=0.0 \mathrm{~mm}, \sigma=1.0 \mathrm{~mm}$ and τ user defined.
- A moving average with a window size of 4 was applied.

Figure 5: The X, Y and Z dimensions of the random walk model for 0.5 s .

Trajectory comparison

$\tau=0.1 \mathrm{~ms}$

Figure 6: X dimension of path with $\tau=0.1 \mathrm{~ms}$

Figure 7: X dimension of path with $\tau=1.0 \mathrm{~ms}$

Velocity distributions

Figure 8: v_{X} distributions for τ $=0.1 \mathrm{~ms}$.

Figure 9: v_{X} distributions for τ $=1.0 \mathrm{~ms}$.

■ Large maximum v_{X} for Figure 8 compared to Figure 9

Trajectory uncertainties

Trajectory uncertainty equation

$$
\Delta(R)=\left[\sum_{j=0}^{n}\left|R_{i}(j)-R_{t}(j)\right|\right] / n
$$

Figure 10: The uncertainty, $\Delta(R)$, as a function of time step, τ, for $\tau \in\{0.08,1.00\} \mathrm{ms}$.

Similarity of velocity distributions

Jensen-Shannon distance (JSD)
A $J S D$ from 0 to 1 shows similarity to dissimilarity.

Figure 11: The $J S D$ as a function of time step, τ, for $\tau \in\{0.08,1.00\} \mathrm{ms}$.

Conclusion

■ \uparrow in temporal resolution $\Rightarrow \uparrow$ in location frequency
■ \downarrow of uncertainty in the trajectory

- This increases the ability of PEPT to track high speed tracers undergoing turbulent motion e.g. centrifuge pumps

References

Hampel, DM, et al., "SuperPEPT: A new tool for positron emission particle tracking; first results". Nuclear Instruments and Methods in Physics, vol. 1028, 2022, p. 166254.

Nicușan, AL, and CRK Windows-Yule, "Positron emission particle tracking using machine learning". Review of Scientific Instruments, vol. 91, no. 1, 2020, p. 013329.

Parker, DJ, et al., "Positron emission particle tracking-a technique for studying flow within engineering equipment" . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 326, no. 3, 1993, pp. 592-607.

Perin, Rayhaan, et al., "On the Ability of Positron Emission Particle Tracking (PEPT) to Track Turbulent Flow Paths with Monte Carlo Simulations in GATE". Applied Sciences, vol. 13, no. 11, 2023, p. 6690.

Thank you!

