Increasing the location rate of Positron Emission Particle Tracking (PEPT) measurements

Presenter: Rayhaan Perin

1 / 12

Coauthors: Katie Cole, Jonathan Shock, Stephen W. Peterson

Department of Physics, University of Cape Town

SAIP, 5 July, 2023

Overview of PEPT

Data generation

Figure 1: Siemens ECAT HR++ PET scanner at PEPT Cape Town.

Figure 2: GATE simulation of the HR++ PET camera as seen in Figure 2.

See Perin et al.

The research problem

Figure 3: Illustration (a) shows the interpolation algorithm and (b) shows the timestamps of the simulation, millisecond and interpolation LORs.

See Hampel et al.

Timestamp difference

Figure 4: The temporal error, $\Delta(t)$, for both the millisecond and the interpolated timestamps.

• The following fit results are for $\Delta(t)_{i,s}$

• $\mu = (-7.3 \pm 1.0) \times 10^{-4}$ ms, $\beta = 0.02014 \pm 0.00014$ ms

Reduced $\chi^2=$ 0.28, L= 377 \pm 19 kHz

Random walk model

- The $\gamma = 0.0$ mm, $\sigma = 1.0$ mm and τ user defined.
- A moving average with a window size of 4 was applied.

Figure 5: The X, Y and Z dimensions of the random walk model for 0.5 s .

6 / 12

Trajectory comparison

Figure 6: X dimension of path with $\tau = 0.1 \text{ ms}$

Figure 7: X dimension of path with $\tau = 1.0 \text{ ms}$

Velocity distributions

Figure 8: v_X distributions for τ = 0.1 ms.

Figure 9: v_X distributions for τ = 1.0 ms.

Large maximum v_X for Figure 8 compared to Figure 9

Trajectory uncertainties

Trajectory uncertainty equation

$$\Delta(R) = \left[\sum_{j=0}^{n} |R_i(j) - R_t(j)|\right] / n$$

Figure 10: The uncertainty, $\Delta(R)$, as a function of time step, τ , for $\tau \in \{0.08, 1.00\}$ ms.

Similarity of velocity distributions Jensen-Shannon distance (JSD)

A JSD from 0 to 1 shows similarity to dissimilarity.

Figure 11: The JSD as a function of time step, τ , for $\tau \in \{0.08, 1.00\}$ ms.

Conclusion

- \uparrow in temporal resolution $\Rightarrow \uparrow$ in location frequency
- \blacksquare \downarrow of uncertainty in the trajectory
- This increases the ability of PEPT to track high speed tracers undergoing turbulent motion *e.g.* centrifuge pumps

References

- Hampel, DM, et al., "SuperPEPT: A new tool for positron emission particle tracking; first results". Nuclear Instruments and Methods in Physics, vol. 1028, 2022, p. 166254.
- Nicuşan, AL, and CRK Windows-Yule, "Positron emission particle tracking using machine learning". Review of Scientific Instruments, vol. 91, no. 1, 2020, p. 013329.
- Parker, DJ, et al., "Positron emission particle tracking-a technique for studying flow within engineering equipment". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 326, no. 3, 1993, pp. 592–607.
- Perin, Rayhaan, et al., "On the Ability of Positron Emission Particle Tracking (PEPT) to Track Turbulent Flow Paths with Monte Carlo Simulations in GATE". *Applied Sciences*, vol. 13, no. 11, 2023, p. 6690.

Thank you!