Top reconstruction in the dilepton channel for the top Yukawa extraction

James Mitchell, Cameron Garvey, James Keaveney

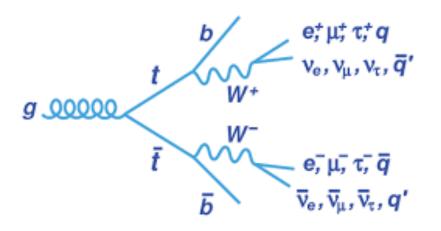
UNIVERSITY OF CAPE TOWN

67株 Annual Conference of the South African Institute of Physics

Date: 03 -07 July 2023 | Venue: University of Zululand, Richards Bay Campus

Yukawa coupling

- Yukawa coupling describes the strength of the interaction between the fundamental fermion fields and the Higgs field
- Fermion mass related to the strength of their Yukawa coupling
- Why are we interested in the Yukawa interaction?
 - Precision tests of the SM
 - Deviation from SM value could indicate new physics
 - Window into Higgs sector

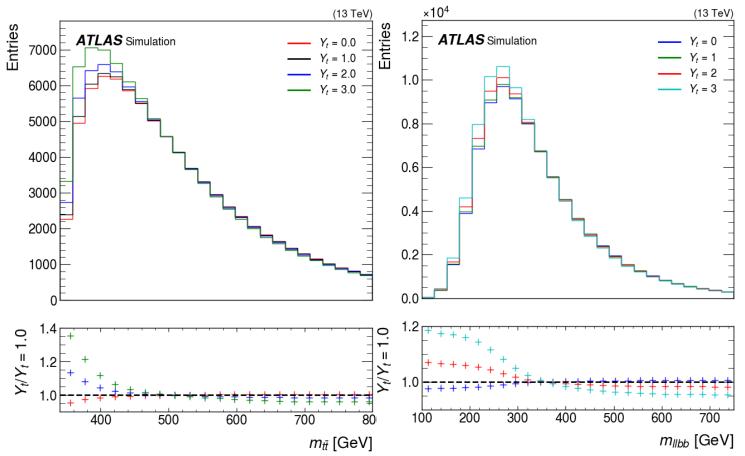

Goal: Describe a study to include top quark kinematic reconstruction into a new analysis that will measure the top quark Yukawa coupling using ATLAS data

Top quark

- Top quark is the heaviest particle in the standard model
- Highest mass means it has the largest Yukawa coupling
- The top quark decays $t \rightarrow Wb \sim 100\%$
- b-quark forms a jet in the detector
- *W* boson can decay leptonically or hadronically
- This allows for three final states:
 - All hadronic
 - Lepton + jets
 - Dilepton

Possible decays of the $t\bar{t}$ system

Jet – a collimated spray of particles formed through hadronization of an isolated quark



Motivating top reconstruction

Kinematic reconstruction – reconstructing the kinematic properties of a decayed particle from its decay products

- Limiting factor of this analysis is the sensitivity of the kinematic distributions used
- Currently utilizing measured decay products of the top quark – m_{IIbb}
- At truth level, m_{tt} is more sensitive than m_{llbb}

Cannot use the m_{tt} distribution without reconstructing the kinematics of the top quarks

Top reconstruction in the dilepton channel

- Dilepton final state contains:
 - 2 b-quarks
 - 2 leptons (e/µ)
 - 2 neutrinos
- In order to reconstruct the $t\bar{t}$ system, kinematics of all final state particles must be known
- Neutrinos can't be detected at ATLAS
- MET can be calculated for each event and attributed to the neutrinos
- Neutrino four vectors must be estimated to reconstruct the $t\bar{t}$ system

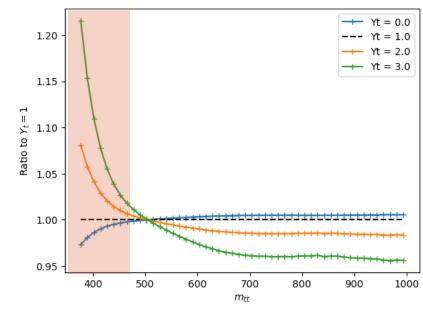
MET – Missing Transverse Momentum – the negative vector sum of the momentum in the transverse plane of all the physics objects in an event. Presence of MET can imply undetected particles.

Feynman diagram of the $t\bar{t}$

dilepton final state

 $g_{_{\scriptstyle 111111}}$

q


b

Kinematic equations and constraints

- Equations cannot be solved analytically without imposing further constraints:
 - W boson masses fixed to 80 GeV
 - Mass of the top quarks fixed to 172.5 GeV
 - Assume that MET is attributed exclusively to the two neutrinos

Issues:

- m_{tt} distribution most sensitive to Y_t around the threshold region
 - Threshold region is at $m_{tt} \simeq 2 \cdot m_t$
- At least one top quark must be off shell below threshold region
 - Fixing top mass assumes that both top quarks in reconstruction are on shell

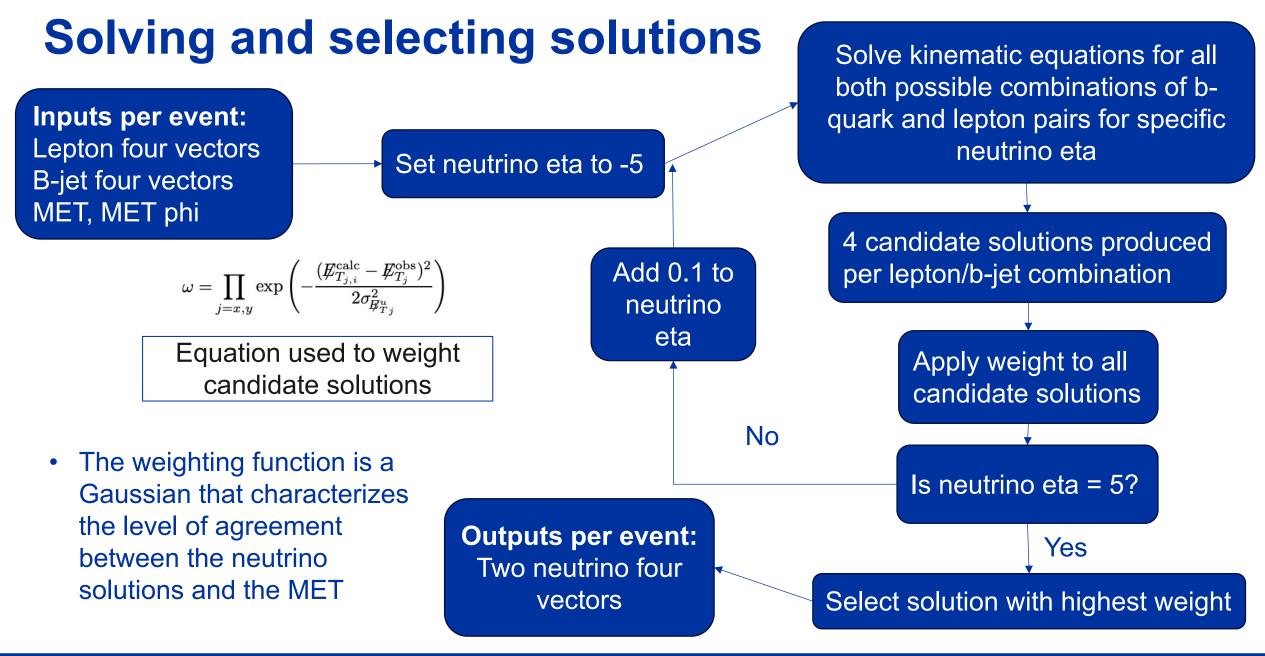
Ratio plot of m_{tt} for different Y_t values to SM Y_t

 $m_t^2 = (E_b + E_{\ell^+} + E_{\nu})^2 - (p_{b_x} + p_{\ell_x^+} + p_{\nu_x})^2$ $- (p_{b_y} + p_{\ell_y^+} + p_{\nu_y})^2 - (p_{b_z} + p_{\ell_z^+} + p_{\nu_z})^2$ $m_t^2 = (E_{\bar{b}} + E_{\ell^-} + E_{\bar{\nu}})^2 - (p_{\bar{b}_x} + p_{\ell_x^-} + p_{\bar{\nu}_x})^2$ $- (p_{\bar{b}_y} + p_{\ell_y^-} + p_{\bar{\nu}_y})^2 - (p_{\bar{b}_z} + p_{\ell_z^-} + p_{\bar{\nu}_z})^2$ Set of equations describing

 $-(p_{\ell_y^+}+p_{\nu_y})^2-(p_{\ell_z^+}+p_{\nu_z})^2$

 $-(p_{\ell_y^-}+p_{\bar{\nu}_y})^2-(p_{\ell_z^-}+p_{\bar{\nu}_z})^2$

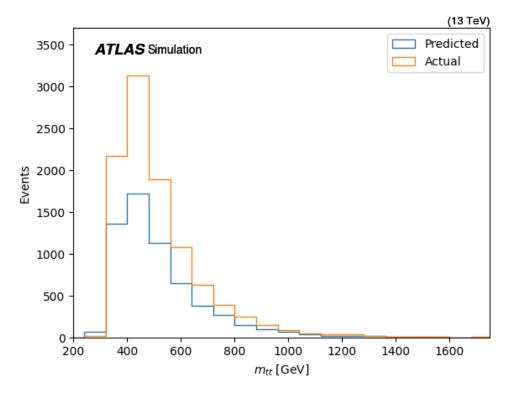
 $E_{\nu}^2 = p_{\nu_x}^2 + p_{\nu_y}^2 + p_{\nu_z}^2 + m_{\nu}^2$

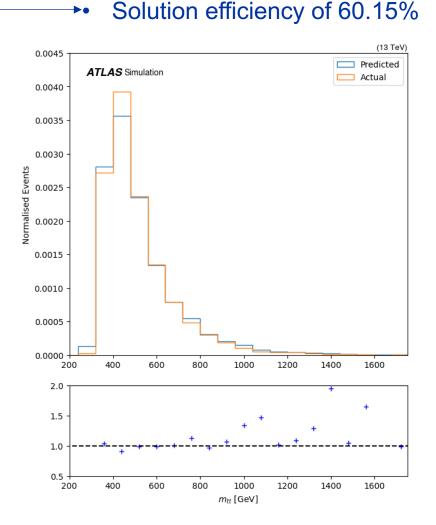

 $E_{\bar{\nu}}^2 = p_{\bar{\nu}_x}^2 + p_{\bar{\nu}_y}^2 + p_{\bar{\nu}_z}^2 + m_{\bar{\nu}}^2$

 $m_{W^+}^2 = (E_{\ell^+} + E_{\nu})^2 - (p_{\ell^\pm} + p_{\nu_x})^2$

 $m_{W^-}^2 = (E_{\ell^-} + E_{\bar{\nu}})^2 - (p_{\ell^-} + p_{\bar{\nu}_x})^2$

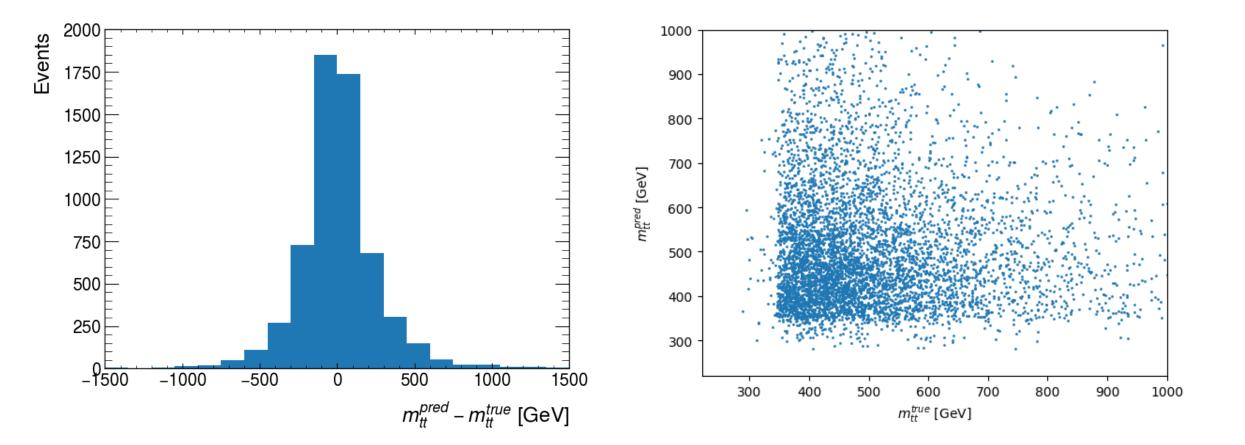
Set of equations describing the kinematics of the $t\bar{t}$ system





Initial results - distributions

Efficiency – in this context, defined as the percentage of events where a solution to the kinematic equations was found, and neutrino four vectors have been created



Initial results – performance

Further work

Smearing:

- Purpose of smearing is to increase solution
 efficiency
- Attempt to solve kinematic equations 100 times
- For each attempt:
 - Lepton and b-jet energy randomly varied within detector resolution
 - W-boson mass varied according to Breit– Wigner distribution
- Solution calculated as weighted average of all solutions

Machine Learning

- Analytical solution attempted first to act as baseline for comparing machine learning techniques
- Test existing methods such as SPA-net
- Test range of different neural network
 architectures

Conclusion

- Dilepton channel used for Y_t extraction
- m_{tt} kinematic distribution is more sensitive at truth level to Y_t than other observables
- Cannot use m_{tt} distribution without top reconstruction
- Using analytical solution, solving $t\bar{t}$ system kinematic equations
- $t\bar{t}$ system under constrained, so additional constraints employed
- Output of algorithm can be used to construct m_{tt} kinematic distribution
- Construction efficiency currently too low to be used in this analysis, but further work will attempt to improve this

Thank you

Any questions?

