Extracting top quark Yukawa coupling from tt differential cross-section in the dilepton final state

C.Garvey, J. Keaveney, J. Mitchell

1<u>University of Cape Town</u>

06 July 2023

Open questions in SM

- \rightarrow What are dark matter & dark energy?
- →The Hierarchy problem
- →Are neutrinos Majarona particles?

Open questions in SM

Open questions in SM

C. Garvey

Top Yukawa Extraction

Yukawa coupling

Yukawa Interaction:

- →Occurs between the fundamental fermion fields and Higgs field.
- →Fermion mass related to the strength of their Yukawa coupling
- →Forms a unique test of the SM in a sector where one could expect New Physics to play a role

Yukawa coupling

Yukawa Interaction:

- →Occurs between the fundamental fermion fields and Higgs field.
- →Fermion mass related to the strength of their Yukawa coupling
- →Forms a unique test of the SM in a sector where one could expect New Physics to play a role

Yukawa coupling

Yukawa Interaction:

- →Occurs between the fundamental fermion fields and Higgs field.
- →Fermion mass related to the strength of their Yukawa coupling
- →Forms a unique test of the SM in a sector where one could expect New Physics to play a role

Top quark:

- \rightarrow Most massive particle in SM m_t = 172.5 Gev
- \rightarrow Provides access to the largest Yukawa coupling (**Y**_t)
 - Predicted to be close to unity

Y_t Extractions

Two methods to extract Y_t, direct & indirect

Indirect:

Processes where virtual Higgs exchanged e.g. 4 top & tt cross-section

Y_t Extractions

Two methods to extract Y_t, direct & indirect

Extracting from tt cross-section

- \rightarrow tt modelling sensitive to EW corrections in production threshold region
- \rightarrow Several measurements from CMS and ATLAS

Production threshold for tt occurs when the centre of mass energy is $\sim 2 \cdot m_t$

Indirect:
Processes where virtual
Higgs exchanged e.g. 4 top
& tt cross-section

$$\overline{q}$$

 \overline{q}
 \overline{q}
 \overline{t}

Indirect:

Analysis signature

Goal: Extract Y_t from dilepton tt production using ATLAS experiment at LHC

tt production:

- Produced via gg & qq initial states at LO
- Gluon production dominant at LHC
- Top quark decays to bottom quark & W⁺ boson ~100%

Analysis signature

Goal: Extract Y_t from dilepton tt production using ATLAS experiment at LHC

tt production:

- Produced via gg & qq initial states at LO
- Gluon production dominant at LHC
- Top quark decays to bottom quark & W⁺ boson ~100%

tt decay:
$$t\bar{t} \rightarrow bW^+ \bar{b}W^- \rightarrow b\ell^+ \nu_\ell \bar{b}\ell^- \nu_\ell$$

Final state topology:

- 2 leptons (e/µ)
- 2 b-jets
- E^tmiss

SAIP 2023

- 1. Calculate Electroweak corrections for tt
 - i. Corrections applied as event weights in final histograms
- 2. Define a region pure in dilepton tt
- 3. Construct observables sensitive to \mathbf{Y}_t
 - i. Implemented at detector level
- 4. Extract Y_t using full systematic model

- 1. Calculate Electroweak corrections for tt
 - i. Corrections applied as event weights in final histograms
 - 2. Define a region pure in dilepton tt
 - 3. Construct observables sensitive to Y_t
 - i. Implemented at detector level
 - 4. Extract Y_t using full systematic model

- 1. Calculate Electroweak corrections for tt
 - i. Corrections applied as event weights in final histograms
- 2. Define a region pure in dilepton tt
 - 3. Construct observables sensitive to \mathbf{Y}_t
 - i. Implemented at detector level
 - 4. Extract Y_t using full systematic model

- 1. Calculate Electroweak corrections for tt
 - i. Corrections applied as event weights in final histograms
- 2. Define a region pure in dilepton tt
- 3. Construct observables sensitive to Y_t
 - i. Implemented at detector level
 - 4. Extract Ytusing full systematic model

C. Garvey

- 1. Calculate Electroweak corrections for tt
 - i. Corrections applied as event weights in final histograms
- 2. Define a region pure in dilepton tt
- 3. Construct observables sensitive to \mathbf{Y}_t
 - i. Implemented at detector level
- 4. Extract Y_t using full systematic model

Electro-Weak corrections

At tt production threshold:

- \rightarrow tt cross-section sensitive to Y_t
 - Exchange of virtual Higgs

→EW corrections simulated using Hathor

- Calculated for gg & qq, respectively
- \rightarrow Most Y_t sensitive region is at low M_{tt}

C. Garvey

Top Yukawa Extraction

Electro-Weak corrections

At tt production threshold:

- \rightarrow tt cross-section sensitive to Y_t
 - Exchange of virtual Higgs

→EW corrections simulated using Hathor

- Calculated for gg & qq, respectively
- \rightarrow Most Y_t sensitive region is at low M_{tt}

C. Garvey

Top Yukawa Extraction

Event Selection

Leptons:

- →Electron: p_T ≥ 25 GeV
- →Muon: p_T > 25 GeV
- \rightarrow Exactly 2 leptons (e/µ)
 - $\circ~$ Regions split into ee, eµ & µµ

OSSF cuts:

- → Z veto: $|m_{ll} 91| > 10 \text{ GeV}$
- → M_{ll} ≥ 50 GeV
- → E^t_{miss} ≥ 30 GeV

- →Using full run 2 dataset [140 fb⁻¹]
- \rightarrow Currently using tt and tW samples
- →Moving forward:
 - Include more backgrounds (Z+jets)
 - Include jet systematics

Jets: →No. of Jets ≥ 2 ∘ Jet p_T: p_T ≥ 20GeV →No. of b-jets = 2 [DL1r]

Kinematic Distributions

 \rightarrow EW corrections are calculated at parton level

→Need to obtain observables at detector level

Constructed observables:

- →Use measured decay products of tt pair
- \rightarrow Serve as proxy for M_{tt}
- →At detector level:
 - \circ M_{IIbb}

Kinematic Distributions

 \rightarrow EW corrections are calculated at parton level

→Need to obtain observables at detector level

Constructed observables:

- \rightarrow Use measured decay products of tt pair
- \rightarrow Serve as proxy for M_{tt}
- →At detector level:
 - \circ M_{IIbb}

Kinematic Distributions

 \rightarrow EW corrections are calculated at parton level

→Need to obtain observables at detector level

Constructed observables:

- \rightarrow Use measured decay products of tt pair
- \rightarrow Serve as proxy for M_{tt}
- →At detector level:
 - \circ M_{IIbb}

C. Garvey

Are there more sensitive observables?

→Room for improvement using top reconstruction

More on this in James' talk tomorrow

Top Yukawa Extraction

SAIP 2023

Technical information:

- \rightarrow A binned profile likelihood fit is used
- →Extraction implemented using template morphing
 - $\,\circ\,$ Templates are created using EW corrections for Y_t = 0,1,2 & 3
 - Linearly interpolating between templates

Due to linear interpolation we extract Y²t

- \rightarrow The full run 2 dataset used [140 fb⁻¹]
- →Analysis is fully blinded
- \rightarrow Reduced set of systematics:
 - tt & tW normalisations

- →The full run 2 dataset used [140 fb⁻¹]
- →Analysis is fully blinded
- →Reduced set of systematics:
 - tt & tW normalisations

 $m_{\ell\ell\,bb}$

- →The full run 2 dataset used [140 fb⁻¹]
- →Analysis is fully blinded
- →Reduced set of systematics:
 - tt & tW normalisations

Extracted value:

Conclusion

- → Electroweak corrections calculated for tt and applied as event weights
- \rightarrow Event selection in place to select for dilepton tt
- \rightarrow Constructed kinematic variables sensitive to Y_t
 - Using mass of measured decay products of tt (MIIbb)
 - Potential to implement top reconstruction
- \rightarrow Extraction implemented using a reduced set of systematics
- → Using Asimov data extracted a best fit value of
 - $Y_t^2 = 1.00 \pm 0.21$

Thank you for your time

Any Questions?

Backup

→To test the extraction a signal injection test was performed using custom Asimov data

 \rightarrow Using 36 fb⁻¹ data while testing Extracted Y_t Expected Strategy Extracted Y_f^2 \rightarrow Create custom Asimov dataset for multiple 3 values of Yt 2 \rightarrow Fit simulation & extract best fit value for Y_t \rightarrow Should return injected Y_t 2 3 4 5

Injected Y_{f}^{2}

Looking Forward

Top quark reconstruction:

- →Estimate 4 vector of top quarks
- \rightarrow Increase sensitivity to Y_t

Imaginary part of Y_t:

→ Sensitivity at high masses to imaginary part of Y_t

Beyond SM:

- → Y_t expected to be sensitive to BSM theories
- → Interpret results using SM Effective Field Theory

Toponium:

- \rightarrow Theoretical bound state of top quarks
- → Predicted to form in the production threshold region