

A search for *tWZ* production at the ATLAS experiment

Alex Veltman

Supervisor: Dr. James Keaveney

SAIP 2023

The *tWZ* process

- Extremely rare unobserved SM process
- Used to constrain new physics theories
 - Particularly Standard Model effective field theory (SMEFT)
- Experimental signatures are 3 and 4 lepton with $Z \rightarrow \ell \ell$
- CMS found obs. significance of 3.5 (exp. 1.4)[1]

Question: Could tWZ be found with the ATLAS Run 2 pp dataset (L=140fb⁻¹)?

Goal: Measure the cross section σ_{tWZ} and compare it with SM prediction

Challenges

- 1. Large *ttZ* backgrounds
- 2. Considerable diagram interference with *ttZ*

Analysis Overview

Analysis Overview

3 Channel

- Difficult to distinguish from 3?
 backgrounds
- Backgrounds are trilepton *ttZ* and *WZ*+jets

4[®] Channel

- Easier to distinguish but lower statistics
- Backgrounds are tetralepton *ttZ* and *ZZ*+jets

Signal and Control Regions

Trilepton Regions				
tWZ SR	$t\overline{t}Z$ CR	WZ CR		
$N_\ell=3$	$N_\ell = 3$	$N_\ell = 3$		
1 Z Candidate	1 Z Candidate	1 Z Candidate		
≥ 3 jets	≥ 4 jets	1 or 2 jets		
1 b-tagged jet	$\geq 2 b$ -tagged jet	1 b-tagged jet		

Regions are defined based on number of physics objects in an event

Signal regions for signal events and Control regions to estimate background rates

Z candidate is an OSSF lepton pair within 10GeV of m_z

Signal and Control Regions

Trilepton Regions				
$tWZ \; SR$	$t\overline{t}Z$ CR	WZ CR		
$N_\ell=3$	$N_\ell = 3$	$N_\ell = 3$		
1 Z Candidate	1 Z Candidate	1 Z Candidate		
≥ 3 jets	≥ 4 jets	1 or 2 jets		
1 b-tagged jet	$\geq 2 b$ -tagged jet	1 b-tagged jet		

Region: A classification for events for isolating a sample based on physical information

Signal regions for signal events and Control regions to estimate background rates

Tetralepton Regions					
tWZ OF SR	tWZ SF SR	<i>tWZ</i> 3T1L SR	$t\bar{t}Z$ CR	ZZb CR	
$N_{\ell} = 4$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet Opp. Flavour	$N_\ell = 4$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet Same Flavour	$N_\ell = 3, N_{\ell, \text{not tight}} = 1$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet	$N_{\ell} = 4$ 1 Z Candidate \geq 2 jet 2 <i>b</i> -jet	$N_{\ell} = 4$ 2 Z Candidate \geq 1 jet 1 <i>b</i> -jet	
Non-Z leptons	Non-Z leptons				

Signal and Control Regions

Trilepton Regions				
$tWZ \; SR$	$t\overline{t}Z$ CR	WZ CR		
$N_\ell = 3$	$N_\ell = 3$	$N_\ell = 3$		
1 Z Candidate	1 Z Candidate	1 Z Candidate		
≥ 3 jets	≥ 4 jets	1 or 2 jets		
1 b-tagged jet	$\geq 2 b$ -tagged jet	1 b-tagged jet		

Region: A classification for events for isolating a sample based on physical information

Signal regions for signal events and Control regions to estimate background rates

		Tetralepton Regions			
tWZ OF SR	tWZ SF SR	tWZ 3T1L SR	$t\overline{t}Z$ CR	ZZb CR	
$N_{\ell} = 4$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet	$N_{\ell} = 4$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet	$N_\ell = 3, N_{\ell, { m not tight}} = 1$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet	$N_{\ell} = 4$ 1 Z Candidate \geq 2 jet 2 <i>b</i> -jet	$N_{\ell} = 4$ 2 Z Candidate \geq 1 jet 1 <i>b</i> -jet	tWZ OF defined flavours non-Z le
Opp. Flavour Non-Z leptons	Same Flavour Non-Z leptons				

Region Summary

8

Graph Neural Networks

A **graph** is a set of nodes with a set of edges between them.

A **GNN** is a neural network which uses graphs as input

- Benefits
 - No ordering of objects
 - No limit on number of objects
- Drawbacks
 - Cost of graph construction
 - Less mature tooling

Graph construction from event

Nodes \rightarrow Info about object Edges \rightarrow Angular difference between objects Global \rightarrow Graph-wide features

Signal/Background Discrimination with GNN

We want to define a variable to **discriminate** *tWZ* events from background events in our signal regions

- Trained binary classification GNN models
 - Signal = 1 and Bkg = 0
- Separate models for trilepton and tetralepton channels

Tetralepton model shows better performance due to simpler background composition

Trilepton GNN Score

GNN provides good separation in tWZ SR

ttZ CR

Generally good agreement between data and simulation in CR

Tetralepton GNN Score

tWZ OF SR

tWZ SF SR

tWZ 3T1L SR

Great discrimination from the GNN

Low event counts in 4 lepton channel

Tetralepton GNN Score in CR

Good agreement between data and simulation across CRs

Signal Extraction Method

ATLAS EXPERIMENT

- Performed a binned profile likelihood fit using μ (*tWZ*) as parameter of interest
- Nuisance Parameters
 - Experimental Systematic Uncertainties
 - Theoretical Systematic Uncertainties
- Fits are blinded (Asimov) to avoid bias

Blinded: The ATLAS data in all regions is replaced with Asimov dataset

Asimov Dataset: Toy dataset whose number of entries is the same as each bin is equal to the simulated value

Experimental Uncertainties Luminosity Pileup Jet Vertex Tagger Jet Flavour Tagging Object Energy Scale/Resolution Lepton Scale Factors and more

Theory Uncertainties Cross section estimations μ_R/μ_F scale variations Alternative event generators Parton Distribution Function

Blinded Results

- Similar sensitivity between 3 lepton and 4 lepton channels
- Combined result improves sensitivity
- Both statistically and systematically limited

$$\mu_{tWZ} = 1.00^{+0.56}_{-0.53} (\text{stat.})^{+0.54}_{-0.41} (\text{syst.})$$

Dominant Systematics

- 1. $t\bar{t}Z$ cross section normalisation
- 2. Jet Energy Resolution (JER)
- 3. PDF uncertainty of *tWZ* sample

 $Z^{\exp} = 1.34\sigma$

Summary

- *tWZ* process is a rare and never-before-observed process
- Difficult to measure due to large *tT* backgrounds and low number of events
- Explored both the trilepton and tetralepton channels
- GNN was used for S/B discrimination
- Measured an expected significance of $Z^{exp}=1.34\sigma$
 - Similar to CMS

 $\mu_{tWZ} = 1.00^{+0.56}_{-0.53}(\text{stat.})^{+0.54}_{-0.41}(\text{syst.})$

Both statistically and systematically limited

Backup

Investigating the Systematic Uncertainties

Impact: How much a systematic affects the fitted value of $\mu(tWZ)$

Large impacts due to *ttZ* cross section estimation and jet modelling systematics

Blue is how much the value of $\mu(tWZ)$ changes when systematic varies (top axis) **Black** is value of systematic post-fit (bottom axis)

Data and Simulation samples

ATLAS Full Run 2 proton proton collisions at \sqrt{s} = 13 TeV

Years	Luminosity (fb ⁻¹)
2015 + 2016	3.2 + 33.0
2017	44.3
2018	58.5
Total	139

Simulation Samples tWZ-DR1 tWZ-DR2 ttZ ZZ WZ tth tth tt VVV tty + others

Diagram removal (DR): Accounting for higher order ttZ diagrams

More systematics

Experimental Systematics Luminosity Pileup Jet Vertex Tagger Jet Flavour Tagging Jet Energy Scale/Resolution e/gamma Scale/Resolution μ Scale/Resolution E_T^{miss} Soft terms Lepton Scale Factors and more

Theory Systematics Cross section estimations muR/muF scale variations Alternative event generators PDF calculations

Trilepton Region Definitions

Baseline selections				
$N_\ell=3$				
$p_T(\ell_1, \ell_2, \ell_3) > (30, 20, 14)$ GeV				
p_T (jet	$) > 25 \text{GeV}, \eta(\text{jet}) < 2.5, \text{JVT}$	$\Gamma > 0.5$		
$ \eta(\ell_e) < 2.47$ excluding $1.37 < \eta(\ell_e) < 1.52$				
	$ \eta(\ell_{\mu}) < 2.5$			
All OSSI	F lepton pairs require mOSSE	> 10 GeV		
1 Z Candidate (OSSF pair where $m_{ll} - m_Z < 10 \text{GeV}$				
Regions				
$tWZ SR$ $t\bar{t}Z CR$ $WZ CI$		WZ CR		
≥ 3 jets ≥ 4 jets 1 or 2 j		1 or 2 jets		
1 b-tagged jet	$\geq 2 \ b$ -tagged jet	1 b-tagged jet		

Tetralepton Region Definitions

Baseline selections

 $\begin{array}{l} p_T(\ell_1,\ell_2,\ell_3,\ell_4) > (28,18,10,10) \mbox{GeV} \\ p_T(\mbox{jet}) > 20 \mbox{ GeV}, |\eta(\mbox{jet})| < 2.5, \mbox{JVT} > 0.5 \\ |\eta(\ell_e)| < 2.47 \mbox{ excluding } 1.37 < |\eta(\ell_e)| < 1.52 \\ & |\eta(\ell_\mu)| < 2.5 \\ & \sum_\ell q_\ell = 0 \end{array}$ All OSSF lepton pairs require $m_{\rm OSSF} > 10 \mbox{ GeV}$

Regions				
tWZ OF SR	tWZ SF SR	<i>tWZ</i> 3T1L SR	$t\bar{t}Z$ CR	ZZb CR
$N_\ell = 4$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet Opp. Flavour Non-Z leptons	$N_\ell = 4$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet Same Flavour Non-Z leptons	$N_{\ell} = 3, N_{\ell, \text{not tight}} = 1$ 1 Z Candidate \geq 1 jet 1 <i>b</i> -jet	$N_{\ell} = 4$ 1 Z Candidate \geq 2 jet 2 <i>b</i> -jet	$N_\ell = 4$ 2 Z Candidate \geq 1 jet 1 <i>b</i> -jet