

Evaluation of the significance of a scalar candidate at 95 GeV at the Large Hadron Collider (LHC)

Thabo Pilusa, Bruce Mellado, Mukesh Kumar, Srimoy Bhattacharya

University of the Witwatersrand, ICPP

UNIVERSITY OF THE WITWATERSRAND

outline

- LEP 95 GeV excess
- ATLAS and CMS excess
- Connection between ATLAS and CMS

The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL for the search of the SM Higgs boson

local significance of 2.3 σ

3

ATLAS AND CMS EXCESS AT 95 GeV

This Photo by Unknown author is licensed under CC BY.

a sim

Search for SM Higgs-like boson with categorization assuming SM-like production mechanisms (ggF, VBF, VH,ttH)

Purely inclusive search with classification according to photon conversions (UU,UC,CC). ATLAS has less sensitivity compared to CMS and does not exclude the excess.

m_H [GeV]

Dedicated search for scalar decaying into tau pairs.

CMS observes a local (global) excess of 3.1 (2.7) σ at ~100 GeV

ATLAS measurements of Higgs boson cross section in $H \rightarrow \tau \tau$ decay channel

arXiv:2201.08269

Bkg

Data

$H \rightarrow \tau \tau$

ATLAS didn't perform an explicit search in this mass range

We therefore treat this as a null result which reduces the significance of the CMS excess by a factor of $\sqrt{2}$, assuming that the ATLAS and CMS analyses have similar sensitivity.

We used the combined transverse mass distributions from ATLAS and CMS to find an excess with local significance of $\approx 2.6\sigma$

S.Bhattacharya, G.Coloretti, A.Crivellin, B.Mellado arXiv:2302.07276

200

For the first time, we combine the hints for a 95 GeV scalar $X_{2k}^2 = -2\sum_{i=1}^k \log(p_i),$

- We use *Fisher's* method for pvalues combination
- Blue, Red and Green curves are combinations of ATLAS and CMS in their respective final states
 - The Black curve is the combination of all the three curves with 3 degrees of freedom
 - local excess of 4.1σ

summary

we combined the hints for the presence of a scalar at m_s≈ 95 GeV

This opens the possibility of a decay chain explaining the multilepton anomalies.

More searches and analysis to see if this ever passes 5σ

••••

.

Thank You

email: thabo.pilusa@cern.ch