Hunting dark matter with a MeerKAT

Geoff Beck, University of the Witwatersrand

July 2023, SAIP Annual Conference

Talk outline

- What do we know about dark matter?
- How do you search for the invisible?
- Previous searches with radio telescopes
- MeerKAT and the MGCLS
- Results with galaxy clusters
- Conclusion

What do we know about dark matter?

- It's important
- It's massive
- It's probably a particle
- Electrically neutral

Universe content

That's not much to go on....

So how do we search for it?

(Weakly Interacting Massive Particles)

- Very "generic" type of dark matter (lots of possible models!)
- Massive, neutral particle with weak interactions
- Could decay or self-annihilate

WIMPs

The standard model products are visible!

What to look for?

Gamma-rays (Fermi-LAT)

For large DM masses (> 5 GeV)

Signatures in radio

- Diffuse emission: no clear point source
- Dark matter exists in a halo
- Strong central emission from high density

Point sources

Solving diffusion equations

$\frac{d \psi}{d t} = \nabla (\mathbf{D}(\mathbf{E},\mathbf{r})\nabla \psi) + \frac{d}{dE} (\mathbf{b}(\mathbf{E},\mathbf{r})\psi) + \mathbf{Q}(\mathbf{E},\mathbf{r})$

- Our own code: DarkMatters (will be public soon)
- Crank-Nicolson discretisation
- Accelerated ADI solver like Galprop
- Matrix equations solved with sparse solver
- Fast and accurate

Searches for WIMPs

- Haven't found DM
- Placed limits on annihilation rate

Galaxy clusters vs dwarfs

Galaxy clusters:

Pros:

Highly DM dominated Magnetic field information Diffusion information Halo information

Cons: Baryonic backgrounds Dwarf galaxies:

Pros: Highly DM dominated Low baryonic backgrounds

Cons: Magnetic field unknown Diffusion environment unknown Halo uncertainties

Why MeerKAT?

- High angular resolution (resolve small sources)
 Need to subtract point sources to see diffuse
- High sensitivity (faint DM emissions)
- Wide frequency bands
- Many frequency channels (line searches)

The MGCLS

MeerKAT Galaxy Cluster Legacy Survey, arXiv: 2111.05673

- 115 Galaxy clusters at L-band (900 1670 MHz)
- 6-10 hrs observation on each cluster
- 8 arcsecond resolution
- 3-5 μ Jy/beam sensitivity
- 62 with diffuse emission (56 of which are new)
- We want those without diffuse and at low z
- We need to pick those with halo information though!

The MeerKAT Galaxy Cluster Legacy Survey

I. Survey Overview and Highlights

K. Knowles^{1,2,3,*}, W. D. Cotton^{4,3}, L. Rudnick⁵, F. Camilo³, S. Goedhart³, R. Deane^{6,7}, M. Ramatsoku^{2,8}, M. F. Bietenholz^{9,10}, M. Brüggen¹¹, C. Button⁷, H. Chen¹², J. O. Chibueze^{13,14}, T. E. Clarke¹⁵, F. de Gasperin^{11,16}, R. Ianjamasimanana^{2,3}, G. I. G. Józsa^{3,2,17}, M. Hilton^{1,18},

The MGCLS: our targets

So far we have found 3 good targets

A4038

Virial mass 4.6 x 10^{14} M_{sun} (Wojtak and Lokas 2007) z ~ 0.028

Cool-core B ~ 8 μ G

RXCJ0225.1-2928

 M_{500} ~ 0.96 x 10^{14} M_{sun} (Shakouri et al 2016) z ~ 0.06 Not cool-core B ~ 5 μG

A133

 $R_{vir} \sim$ 1.44 Mpc (Zhu et al 2021) $c_{vir} \sim$ 6.28 Cool-core B \sim 8 μG

The MeerKAT Galaxy Cluster Legacy Survey

I. Survey Overview and Highlights

K. Knowles^{1,2,3,*}, W. D. Cotton^{4,3}, L. Rudnick⁵, F. Camilo³, S. Goedhart³, R. Deane^{6,7}, M. Ramatsoku^{2,8}, M. F. Bietenholz^{9,10}, M. Brüggen¹¹, C. Button⁷, H. Chen¹², J. O. Chibueze^{13,14}, T. E. Clarke¹⁵, F. de Gasperin^{11,16}, R. Ianjamasimanana^{2,3}, G. I. G. Józsa^{3,2,17}, M. Hilton^{1,18},

The MGCLS: our method

For each target we do the following:

- Subtract point sources (image plane only PYBDSF)
- Compare residual map and DarkMatters map
- Perform χ^2 test to find 95% confidence exclusion
- Consider both NFW and shallow cusp halos

Results: A133

Lavis, Sarkis, Beck, & Knowles in prep

Solid lines: Fermi-LAT (gamma-rays)

We exceed Fermi-LAT within halo uncertainties

Results: A4038

Lavis, Sarkis, Beck, & Knowles in prep

Way better than Fermi! Competes with Regis 2021

Lavis, Sarkis, Beck, & Knowles in prep

Results: RXCJ0225.1-2928

Very sensitive to halo profile, but very strong for NFW

Conclusions and the future

- Powerful limits from MGCLS, competitive with best in literature
- This will improve with more advanced analysis
- Source subtraction from visibilities needed
- Dwarf galaxy analysis currently underway
- Discovery potential (not just constraints)?

MeerKAT and South Africa are on the cutting edge of DM searches