SAIP2023

Contribution ID: 74

Type: Oral Presentation

Evolution of magnetic ground state in ACo₂As₂ (A = K, Ca, Sr, Ba) system

Wednesday, 5 July 2023 14:00 (20 minutes)

 ACo_2As_2 (A = K, Ca, Sr, Ba) and $BaMn_2X_2$ (X = P, As, Sb, Bi) compounds that both crystallize in ThCr₂Si₂type tetragonal structure together present a text-book type example of how the structural parameters and electronic band structure can indirectly govern the magnetic ground state of a crystalline system. ACo_2As_2 compounds exhibit properties that delicately depend upon the interlayer As-As distance d_{As-As} which regulates the oxidation state of Co-ions by controlling the extent of the interlayer As-As bonds. As a result, it controls the magnetic ground state of these materials. On the other hand, d_{X-X} does not show any significant variation within $BaMn_2X_2$ compounds and because of the localized nature of *d*-bands, it does not affect the oxidation state of the Mn-ions as well as the magnetic ground state of these compounds. In this work, we present a comparative study on ACo_2As_2 and $BaMn_2X_2$ systems. Further, we explore the combined effect of the change of electron count as well as the increase in d_{As-As} introduced through the partial substitution of alkaline-earth ions in the ACo_2As_2 system. We report on the magnetic characteristics and electron transport properties of this hole-doped system and explore the interdependency of structural parameters, charge density and many-body interactions within the material.

Apply to be considered for a student ; award (Yes / No)?

No

Level for award; (Hons, MSc, PhD, N/A)?

N/A

Primary author: PANDEY, Abhishek (School of Physics, University of the Witwatersrand)Presenter: PANDEY, Abhishek (School of Physics, University of the Witwatersrand)Session Classification: Physics of Condensed Matter and Materials Track 1

Track Classification: Track A - Physics of Condensed Matter and Materials