Short pathlength corrections to energy loss in a quark gluon plasma

Based on arXiv:2305.13182

Coleridge Faraday

Supervised by A/Prof. W. A. Horowitz

SAIP Conference: 5th of July, 2023

MSc candidate, University of Cape Town

National Research Foundation

Role of QCD in understanding the universe

- First microseconds after the Big Bang?
- Physics of a trillion degrees?
- Neutrons stars?

• *Quantum Chromodynamics* (QCD) describes quarks and gluons, which make up protons and neutrons

What makes QCD special?

- $\bullet~{\rm Coupling}\sim{\rm interaction~strength}$
- Running coupling and perturbation theory
- Nonabelian gauge group

QED running coupling, perturbative at all scales of interest

QCD running coupling, perturbative **only** at high energies

How to study QCD?

• Want to study *Quark Gluon Plasma* \rightarrow high-energy heavy-ion collisions

How to study QCD?

• Want to study *Quark Gluon Plasma* \rightarrow high-energy heavy-ion collisions

Evidence for QGP formation: Angular correlations

 $v_n \equiv \left\langle \cos\left[n\left(\phi - \Psi_n\right)\right]\right\rangle$

- For peripheral collisions dominant v₂ due to *elliptic geometry*
- Well described by *hydrodynamic* models at low-p_T

2nd Fourier coefficient related to azimuthal anisotropy (sig. of *"Elliptic flow"*) (Schenke et al. 2020, 2005.14682)

Evidence for QGP formation: Energy loss

$$R_{AB}^{h} \equiv rac{\mathrm{d}\sigma_{AB}^{h}}{N_{\mathrm{coll}} \mathrm{d}\sigma_{pp}^{h}}$$

- N_{coll} from Glauber model, treating nucleons as independent
- Normalised s.t.
 - $R_{AB} < 1 \implies$ suppression
 - $R_{AB} = 1 \implies$ no final state effects
 - $R_{AB} > 1 \implies$ enhancement

Solid evidence for QGP in A + A; p + A as a null control?

QGP formation in small systems?

(CMS 2017, 1611.01664)

Energy loss in QGP

- Energy loss via *elastic* and *radiative* interactions with scattering centers.
- Radiative: Assume few, hard scatters and expand in powers of opacity L/λ (DGLV)

(Gyulassy et al. 2001, nucl-th/0006010, Djordjevic et al. 2004, nucl-

th/0310076, Braaten et al. 1991, 10.1103/PhysRevD.44.R2625)

Energy loss in QGP

- Energy loss via *elastic* and *radiative* interactions with scattering centers.
- Radiative: Assume few, hard scatters and expand in powers of opacity L/λ (DGLV)

(Gyulassy et al. 2001, nucl-th/0006010, Djordjevic et al. 2004, nucl-

Applicability of conventional A + Atechniques for p + A?

Energy loss in small systems

- Radiative: Large pathlength assumption $L \gg \lambda$
- *Elastic*: Central limit theorem (large num. of scatters)
- Nonequilibrium effects $\tau < \tau_0$
- First principle derivations in finite systems

Distribution of path lengths weighted by binary collision density. For all collisions $\lambda \sim 1~{\rm fm}$

Energy loss in small systems

- Radiative: Large pathlength assumption $L \gg \lambda$
- *Elastic*: Central limit theorem (large num. of scatters)
- Nonequilibrium effects $\tau < \tau_0$
- First principle derivations in finite systems

Distribution of path lengths weighted by binary collision density. For all collisions $\lambda \sim 1~{\rm fm}$

Short path length corrections to radiative E-loss

Following arXiv:1511.09313 by Kolbé and Horowitz

• Weakening of assumptions: $1/\mu \ll \Delta z \sim \lambda \ll L \mapsto 1/\mu \ll \lambda$,

well separated assumption

• Important for small systems

Correction results in:

- Breaking of *color triviality*
- Possibility of energy gain
- Nontrivial correction for *all path lengths*
- Correction grows *faster in E* than uncorrected result

$$\frac{\mathrm{d}N}{\mathrm{d}x} = \frac{C_R \alpha_s L}{\pi \lambda_g} \int \frac{\mathrm{d}^2 \mathbf{q}_1}{\pi} \frac{\mu^2}{\left(\mu^2 + \mathbf{q}_1^2\right)^2} \int \frac{\mathrm{d}^2 \mathbf{k}}{\pi} \int \mathrm{d}\Delta z \,\rho(\Delta z)$$

$$\times \left[-\frac{2\left\{1 - \cos\left[\left(\omega_1 + \tilde{\omega}_m\right)\Delta z\right]\right\}}{\left(\mathbf{k} - \mathbf{q}_1\right)^2 + m_g^2 + x^2 M^2} \left[\frac{\left(\mathbf{k} - \mathbf{q}_1\right) \cdot \mathbf{k}}{\mathbf{k}^2 + m_g^2 + x^2 M^2} - \frac{\left(\mathbf{k} - \mathbf{q}_1\right)^2}{\left(\mathbf{k} - \mathbf{q}_1\right)^2 + m_g^2 + x^2 M^2}\right] \right.$$

$$\left. + \frac{1}{2}e^{-\mu_1\Delta z} \left(\left(\frac{\mathbf{k}}{\mathbf{k}^2 + m_g^2 + x^2 M^2}\right)^2 \left(1 - \frac{2C_R}{C_A}\right) \left\{1 - \cos\left[\left(\omega_0 + \tilde{\omega}_m\right)\Delta z\right]\right\} \right] \right]$$

$$+\frac{\mathbf{k}\cdot(\mathbf{k}-\mathbf{q}_{1})}{(\mathbf{k}^{2}+m_{g}^{2}+x^{2}M^{2})\left((\mathbf{k}-\mathbf{q}_{1})^{2}+m_{g}^{2}+x^{2}M^{2}\right)}\left\{\cos\left[\left(\omega_{0}+\tilde{\omega}_{m}\right)\Delta z\right]-\cos\left[\left(\omega_{0}-\omega_{1}\right)\Delta z\right]\right\}\right)$$

where
$$\omega \equiv xE^+/2$$
, $\omega_0 \equiv \mathbf{k}^2/2\omega$, $\omega_i \equiv (\mathbf{k} - \mathbf{q}_i)^2/2\omega$,
 $\mu_i \equiv \sqrt{\mu^2 + \mathbf{q}_i^2}$, and $\tilde{\omega}_m \equiv (m_g^2 + M^2 x^2)/2\omega$

⁽Kolbé et al. 2015, 1511.09313, Djordjevic et al. 2004, nucl-th/0310076, Gyulassy et al. 2001, nucl-th/0006010)

Predictions with the short path length correction

Heavy flavour predictions

Heavy flavour predictions

Heavy flavour predictions

Excessive elastic E-loss in p+A \implies Central limit thrm approx. *breakdown*

Light flavour predictions

Light flavour predictions

Light flavour predictions

What's going wrong? How physical are these results?

Breakdown of assumptions?

- Assumptions have the form $R \ll 1$ where $R = R(\mathbf{k}, \mathbf{q}, x, \Delta z)$
- Compute an *expectation value*:

$$\langle R \rangle \equiv rac{\int \mathrm{d}\{X_i\} \ R(\{X_i\}) \ \left| rac{\mathrm{d}E}{\mathrm{d}\{X_i\}} \right|}{\int \mathrm{d}\{X_i\} \ \left| rac{\mathrm{d}E}{\mathrm{d}\{X_i\}} \right|},$$

and investigate whether $\langle R \rangle \ll 1$?. Note: $dE = \int dx \ xE \ dN/dx$

Breakdown of assumptions?

- Assumptions have the form $R \ll 1$ where $R = R(\mathbf{k}, \mathbf{q}, x, \Delta z)$
- Compute an *expectation value*:

$$\langle R \rangle \equiv rac{\int \mathrm{d}\{X_i\} \ R(\{X_i\}) \ \left| rac{\mathrm{d}E}{\mathrm{d}\{X_i\}} \right|}{\int \mathrm{d}\{X_i\} \ \left| rac{\mathrm{d}E}{\mathrm{d}\{X_i\}} \right|},$$

and investigate whether $\langle R \rangle \ll 1$?. Note: $dE = \int dx \ xE \ dN/dx$

- Also; impact of scattering center distribution? For now:
 - Exponential: $\rho_{\exp}(\Delta z) \equiv \frac{2}{L} \exp[-2\Delta z/L]$
 - Truncated step: $\rho_{\text{step}}(\Delta z) \equiv (L \tau_0)^{-1} \Theta(\Delta z \tau_0) \Theta(L \Delta z)$

Plot of consistency of large formation time assumption: $\mu_1^{-1} \ll \omega_0^{-1}$.

Plot of consistency of large formation time assumption: $\mu_1^{-1} \ll \omega_0^{-1}$.

- Formation time $\tau = \omega_0^{-1} \sim \frac{2\omega}{\mathbf{k}^2}$
- Sensitivity of breakdown to scattering distribution

 \rightarrow impact on R_{AA} ?

 All other assumptions are satisfied self-consistently

Recalculate R_{AA} with truncated step dist.

Size of correction dramatically *reduced*!

Conclusions / Outlook

- *Elastic short pathlength corr.* needed for p + A
- Short formation time corr. to radiative E-loss
- Final state radiation (partially) responsible for enhancement in p + A?
 - Or just normalisation / initial state effects?

Special thanks to my supervisor and SA-CERN.

Thanks for listening!

Elastic E-loss: Central limit theorem

Fractional collisional elastic energy loss distribution where ε is the momentum fraction lost. (Wicks 2008, PhD thesis)

Radiative emission kernel

Single gluon emission kernel for Charm quarks at different energies

Single vs multiple gluon emission kernel for Charm quarks

Geometry

$$\langle T(\tau) \rangle \equiv \left(\frac{\int \mathrm{d}^2 x \ T^6(\tau, \mathbf{x})}{\int \mathrm{d}^2 x \ T^3(\tau, \mathbf{x})} \right)^{1/3}$$
 (1)

where

$$\rho_{\text{part}}(\tau, \mathbf{x}) = \frac{\zeta(3)}{\pi^2} (16 + 9n_f) T^3(\tau, \mathbf{x}),$$
(2)

is the nucleon participant density.

Temperature T of the plasma as a function of proper time τ .

Centrality explanation

Connecting centrality (experiment) and impact parameter (theory)

Making a prediction

- Interpret dN/dx as a probability
- Total probability for E-loss is the convolution $P_{tot}(\epsilon) = \int dx P_{rad}(x) P_{el}(\epsilon x)$
- The R_{AA} is schematically

$$R_{AA} = \text{hadronization} \otimes \text{geometry} \otimes \underbrace{\int \mathrm{d}x \ P_{\text{tot}}(x)(1-x)^{n(p_T)}}_{\text{E-loss in brick}}, \tag{3}$$

where $n(p_T)$ and hadronization are measured.

Accessing R_{AA} theoretically

Assume slowly-varying power law production spectrum:

$$\frac{dN_{\text{prod}}^{q}}{dp_{i}}\left(p_{i}\right) \propto \frac{1}{p_{i}^{n\left(p_{i}\right)}},\tag{4}$$

leads to

$$R_{AA}^{q}(p_{T}) = \int \mathrm{d}\epsilon \ P_{\mathrm{tot}}(\epsilon, p_{T}) (1-\epsilon)^{n(p_{T})-1}.$$
(5)

Averaging over geometry:

$$\langle R_{AA}^{q}(p_{T}) \rangle_{\text{geom.}} = \int dL_{\text{eff}} \rho(L_{\text{eff}}) \times \int d\epsilon \ P_{\text{tot}}\left(\epsilon, \{p_{T}, L_{\text{eff}}, \langle T(\tau_{0}) \rangle\}\right) (1-\epsilon)^{n(p_{T})-1}.$$
(6)

Asymptotic energy loss

$$\frac{\Delta E_{\text{corr.}}}{E} = \frac{C_R \alpha_s}{2\pi} \frac{L}{\lambda_g} \left(-\frac{2C_R}{C_A} \right) \frac{\log\left(\frac{2EL}{2+\mu L}\right)}{2+\mu L}, \tag{7}$$
$$\frac{\Delta E_{\text{DGLV}}}{E} = \frac{C_R \alpha_s}{4} \frac{L^2 \mu^2}{\lambda_g} \frac{1}{E} \log\frac{E}{\mu}. \tag{8}$$

(Kolbé et al. 2019, 1511.09313; Gyulassy et al. 2001, nucl-th/0006010)