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Introduction

» The Weak Gravity Conjecture
In a flat space-time, for a single U(1) gauge theory with
gauge coupling g, there is a least one state that has a charge
g bigger than its mass m, measured in Planck units

m
—_— 2
Mp<fgq

(where Mp is the reduced Planck mass)
Arkani-Hamed, Motl, Nicolis, Vafa
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» For a first check we can look at the SM
lgg| ~ 0.3, me=0.511kev, Mp=2x10"18 = 42 >25%x1071°

Actually, all the fundamental particles of the SM verify this
conjecture



Introduction

» One of the main motivations for the WGC is that it is a
kinematic requirement that allows extremal BHs to decay.

Since we are looking for charged objects, we consider the
Reissner-Nordstrom metric:
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2M Q2 dr?
2 _ 2 2 102
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M > Q: This solution has two horizons, and describe a BH
M = Q :The two horizons are combined,(extremal BH)

M < Q :There is no horizon, the solution is a naked
singularity and it is a non-physical solution.



» Let's consider an extremal BH, M = Q
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Figure: Extremal black holes can only decay into a particle that respects
the WGC and a non-extremal black hole.



» Let's consider an extremal BH, M = Q

Figure: Extremal black holes can only decay into a particle that respects
the WGC and a non-extremal black hole.

*« The WGC is thus seen to open up a possibility for extremal
black holes to decay into non-extremal.
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If we generalize to the WGC to the case with non-vanishing
vacuum energy and also we add a dilaton field..

» The simplest case is a cosmological constant A # 0

» We will consider a dilaton coupling e2?F?
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» We will consider a dilaton coupling e~2*¢F?
This leads to the Einstein-Maxwell-Dilaton action in 4D:
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This action on n-dimension

S= /d"x\/fg[R - 0,60"6 — er -2 F? — V(¢)]




Strategy:
» 1) First we need to construct black hole solutions.

> 2) Next, we need to find the relation between mass and
charge for extremal black holes.

» 3) Finally, we identify the WGC inequality corresponding to
the existence of a super-extremal state.
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No Naked singularity = Q% < M? = ry = M++vVM2 — Q2,
r =0 is a time- like singularity
r4 are inner and event horizons
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No Naked singularity = Q% < M? = ry = M++vVM2 — Q2,
r =0 is a time- like singularity
r4 are inner and event horizons

a#0

1-a?

r{ r—
—1-Ma-5me
g0 =(1- )15

No Naked singularity = Q%e?¥% < (1 + a?)M?.
r— is a space- like singularity
r+is the only event horizon of the black hole.

Gibbons-Maeda Garfinkle-Horowitz-Strominger




dS space : A > 0, n dimensions




dS space : A > 0, n dimensions

1—~(n—3)
o? = 7{[14&)"*3] [1—(’%”*3] ’ 7H2r2{17(r;)n73]”}dt2+
r r r
’ ’ 1—~(n—3) r vy -1

[1 - ('L)"’ﬂ 7W(n74)dr2 47 {1 — (= )"’3} s (2.1)
B n—2" -

H? = @ = Hubble parameter. Gao-Zhang/ Elvang-Friedman-Liu
Note that r_ still indicates the coordinate of a singular
surface,

r+ is not an event horizon.

rc is a cosmological horizon.

[Cosmological horizon|

.. [Eventhorizon



» The (0,0) component of the metric :




» A>0 a=2(a>ar=1)andn=5
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» WGC in flat space and 5 dimensions: r,. = r_ = M? = %2
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» In flat 5 dimensions = r_ =r, = M? < %QQ,
» Now in De sitter space, by expansion of equation of green line

V3

P

M? < 202 + = Q3H? — %Q“H“ + O(H®)




Conclusion

P> we investigated extremal black hole solutions in
Einstein-Maxwell-Dilaton theory in extra dimensions.
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Einstein-Maxwell-Dilaton theory in extra dimensions.

a > ac = Q2e2a¢>o —_ (1 + a2)l\/12,

Q2 \/§Q2H2 3Q4H4 6
— M2 = > - O(H
“= e = > T 4 16z~ O,
3 2 2 _ 2
O<a<a. = for M2:Q(8a),
the metric is comlex and the extremality is never reached

V3

3
_ 2 _ 22
a=0 = I\/l<4Q —|——27r

3
Q3H2 - HQ4H4 + O(HG),



Thank you for your attention!



Two positive roots

» In order to find the BH horizons, we look for the roots of f(r),

P

% We are interested only in solutions of f(r)in the region r > r_

outside the singularity
One positive root
/

No positive root
i P()
/ —
/ / / "‘.‘
/ / /
/ /
| ‘ ‘ ‘ ‘ |

\

Two, one, or zero positive roots depending on the position of 7



r-=0.1433233539 7_=0.53962200:

rp= 0.7179153262-0 1241064688«1 = 046178134

re= 0.7179153262 + 0.1241064688+ re= 0.8869937¢
0 Solutions —

|_=0.1016729986 o
2:3'3332%2393 1=0.5871980474 - 0.184746037 11
2 Solutio 3514691866 + 013071208084l
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» The relation between the physical quantities mass M and Q?
and the integration constants ry, r_:

ry

M2

3—n
V/8(n—2)Q2(a2 —n+3)+M?(n—3)2+M(n—3)
Q*(a® +n—3) ( n—3)(n=2)

(n—3)*(n—2
(\/M2(n ~3)2—8(n—2)Q2(—a2+ n—3)+ M(n— 3))
(n=3)(n—2)

8(n—2)Q*(—a? +n—3)
(n—3)
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