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Black hole basics

Einstein-Hilbert action:

5= zi/d4x,/—g(R—zA+Lm)
K

Einstein’s grav. constant:
determinant:

Ricci scalar:

cosmological constant:

Lagrangian for the matter fields:

k= 8nGe*
g = det(guv)
R =gM""R,,
A =3/1%
EWI

1/13 A.S. Cornell Black holes and nilmanifolds



2 Black hole basics

Einstein-Hilbert action:

1
S = ﬂ/d‘lx\/—g(R—ZA—kﬁm)

HéSzO

Einstein field equations for flat space, in vacuum:

1
Ry — EguvR+%:%
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Black hole basics

The “no-hair” conjecture

Symmetry axis
@ =0)

All stationary black hole solutions
in GR can be completely
characterised by three independent,

Equatorial :
(P,,"‘""i ) externally observable, and classical
= }m]
Stationary parare ters:
Jimit
f
Ergosphere « mass M,
Event horizon .
Ring rer * electric charge Q,
singularity

* angular momentum a.
Hawking & Ells, The Large Scale Structure of Space-time
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Black hole basics

Stationary, neutral, spherically-symmetric black hole:
Quudxtdx” = —f(r)dt* + f(r)~dr* + r* (d6* + sin’® 0d4?)

The “no-hair” conjecture
]

Symmetry axis
" w=0
fr)=1-—
7
Equatorial
plane
0=im event horizon: rg = 2M
Stationary .
Jimit photon orbit: re = 3M
surface BH .—2
Ergosphere length scale: M=Gm"c“=1
r :
F\:x:ihomon (G = 1) Bekenstein

singularity

Hawking & Ells, The Large Scale Structure of Space-time

2/13 A.S. Cornell Black holes and nilmanifolds


https://doi.org/10.1080/00107510310001632523

1957: Regge and Wheeler’s grav. perturbations

The birth of black hole perturbation theory:

L REVIEW

VOLUME 108, NUMBER 4 NOVEMBER

Stability of a Schwarzschild Singularity

Turrio REGGE, Istituto di Fisica della Universitd di Torino, Torino, Ttaly

AND

Joux A, WarELER, Palmer Physical Laboratory, Princelon University, Princeton, New Jersev

(Received July 15, 1957)

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will
undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small

nongpherical perturbation.

guudxtdx” = —f(r)df +f(r)"'dr* + r* (d6* + sin® 0d¢?)
S = &uw = Swthw (> hw)
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Quasinormal mode: "ringdown"

Quasinormal mode and frequency

* Re{w} = physical oscillation frequency
* Im{w} = damping — dissipative, "quasi"
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Quasinormal mode: "ringdown"

Quasinormal mode and frequency

\I/(xﬂ) = Z Z wsnTK(r)e_thYZm(ea ¢) > Wsne = WR — Wy

>*

s: spin of perturbing field

m: azimuthal number for spherical harmonic
decomposition in 6;

¢: angular /multipolar number for spherical harmonic
decomposition in 6, ¢

n: overtone number labels QNMs by a monotonically
increasing |Im{w}|

*

>

>*
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Quasinormal mode: "ringdown"

10—21)

~

Strain
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— Numerical relativity
I Reconstructed (template)
I 1

T
Merger Ring-
down

B. P. Abbott et al., PRL 116, 061102 (2016)
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https://arxiv.org/abs/1602.03837

Quasinormal mode: "ringdown"
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B. P. Abbott et al., PRL 116, 061102 (2016).
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Harmonics and overtones

the fundamental (¢,m,n) = (2,2,0) mode dominates ringdown
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- (3,3,0)
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a multimodal analysis of the GW150914 data using PYRING,
see Carullo ef al.
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https://arxiv.org/abs/1902.07527

©) Quasinormal mode: "ringdown"

Due to symmetries, only 2 ODEs needed:
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Quasinormal mode: "ringdown"

Due to symmetries, only 2 ODEs needed:

* Angular behaviour encapsulated by spheroidal harmonics:

00+1
VY(0,6) =~y 0,0)

* s.t. QNM computations depend on radial behaviour
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The QNM eigenvalue problem

Black hole wave equation:

— reduces to a second-order ODE in r
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The QNM eigenvalue problem

Black hole wave equation:

7 £

2
Lot + [~ V()] () =0,

*

— subjected to QNM boundary conditions

purely ingoing:  p(r) ~ e ¥ r, 5 —o0 (r = ,)

purely outgoing:  (r,) ~ e~ @) s« = 400 (r = 400)

Waves escape domain of study at the boundaries = dissipative
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s
Why do we consider extra-dimensional scenarios? 1

What is the significance of these extra dimensions?
Today: A path to physics BSM?

» 1980s: “KK renaissance”, 1984 “superstring revolution”
¢ 1998: Arkani-Hamed, Dimopoulos, Dvali: large EDs

¢ 1999: Randall and Sundrum: warped EDs
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Why the negativity?

Negatively-curved EDs: a BSM landscape of untapped potential?

Phenomenological implications:

* natural resolution to the hierarchy problem
— volume grows exponentially with ¢ /¢,

— RSI-like KK mass spectrum w/o light KK modes
» zero modes of Dirac operator emerges w/o gauge breaking

¢ enables homogeneity and flatness of observed universe
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Negatively-curved extra dimensions: the nilmanifold <5

Any Lie group G of dimension d can be understood as a d-dimensional
differentiable manifold. To compactify solvable G, we quotient by the lattice I

For nilpotent groups, the resultant twisted torus is a nilmanifold.

[Zb’ ] fbc as fbc _7fabc

1
R = —1(5,101 5be 5cgfabc d

Wikimedia Commons, Torus & Twisted torus
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Negatively-curved extra dimensions: the nilmanifold

Consider the Heisenberg algebra...
[Z17Z2] = _fZ3 ) [Z17Z3] = [227Z3] =0

de® =fel Ae?, del =0, de? =0
131 2 272 172 r'r?
el =rlayt ) & =rdy?, & =r3dy’ + Nridy?) , N:r—3f

: co 42— oN dyidyd
-..gives us the metric ds}, = ¢ dx'dx

Wikimedia Commons, Torus & Twisted torus
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An unconventional QNM application

How can we exploit available GW searches to investigate
extra-dimensional scenarios?
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&2 Black holes in higher-dimensional space-times

The BH-nilmanifold metric

dsfp, = gt (x)dx'dx” + g (y)dy'dy

\Ilnfm(t 1,0, 9,y1, y27y3 ZZ el m 9)Z (y17y27y3)

ezwtr
n=0 £,m

dshy = —f(r)dt? +f(r)"'dr* + r(sin® d6* + d¢?)
flr)=1-2M/r

dsi,, = ridy? + r3dy3 + r3(dys + Nridy,)?
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&2 Black holes in higher-dimensional space-times

The BH-nilmanifold metric

dslp = b (x)dxtdx” + g (y)dy'dy’

nem(E: 70,0, Y1, Y2, 3) ZZ%M Y300, 9)Z(y1, 2, y3)

elwtr
n=0 ¢,m

Laplacian of a product space is the sum of its parts

(Vi +VA,) D 202i(y) =0,

VAaZe(y) = —uiZi(y)
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Black holes in higher-dimensional space-times

The wavelike equation

d21/J
dr?

+ (wz—V(r)>1/1:0

o= (- 24) (1422

T r2
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The QNM spectrum

The fundamental mode: n = 0, { = 2

0.6F T
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r — =038
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Agnostic bounds from ringdown GWs

M ¥ C @ OB wwwgw-openscience.org/events/GW 150914

LIGO

JE5Z Gravitational Wave Open Science Center

Data~ Software ~ Online Tools~ Learning Resources~ About GWOSC~

LVK's Tests of GR with binary black holes from GWTC-1, GWTC-2, GWTC-3

dw = W (1 + dw)

or = 7981 4 o7)
PYRING

a python package for ringdown analysis
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https://arxiv.org/abs/1903.04467
https://arxiv.org/abs/2010.14529
https://arxiv.org/abs/2112.06861
https://lscsoft.docs.ligo.org/pyring/

Agnostic bounds from ringdown GWs

M ¥ C @ OB wwwgw-openscience.org/events/GW 150914

LIGO

JE5Z Gravitational Wave Open Science Center

Data~ Software ~ Online Tools~ Learning Resources~ About GWOSC~

LVK's Tests of GR with binary black holes from GWTC-1, GWTC-2, GWTC-3

bwos = 00200
bros = 013402

PYRING

a python package for ringdown analysis
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Conclusions

% Rich phenomenology awaits in the mathematicians’ playground

— Connecting theory and observation is non-trivial (“the gap")
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Conclusions

% Rich phenomenology awaits in the mathematicians’ playground
— Connecting theory and observation is non-trivial (“the gap")
* QNMs: not just the “fingerprints" of their black hole source

GWA =- new opportunities to apply +60 years of research
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Conclusions

% Rich phenomenology awaits in the mathematicians’ playground
— Connecting theory and observation is non-trivial (“the gap")
* QNMs: not just the “fingerprints" of their black hole source
GWA =- new opportunities to apply +60 years of research

* Detecting modifications to GR is considered to be beyond the sensitivity of

modern detectors (still model-agnostic, first-order, etc.)
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Conclusions

% Rich phenomenology awaits in the mathematicians’ playground
— Connecting theory and observation is non-trivial (“the gap")
* QNMs: not just the “fingerprints" of their black hole source
GWA =- new opportunities to apply +60 years of research

* Detecting modifications to GR is considered to be beyond the sensitivity of

modern detectors (still model-agnostic, first-order, etc.)
» Here, we have determined a QNM detectability bound on extra dimensions

— roadmap for new model-agnostic extra dimensions search
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