BLACK HOLES AND NILMANIFOLDS: QUASINORMAL MODES AS THE FINGERPRINTS OF EXTRA DIMENSIONS?
 Eur. Phys. J. C 83, 325 (2023)

Alan S. Cornell
A. Chrysostomou (UJ/IP2I), A. Deandrea (IP2I),

É. Ligout (ENSL), D. Tsimpis (IP2I)

Black hole basics

Einstein-Hilbert action:

$$
S=\frac{1}{2 \kappa} \int d^{4} x \sqrt{-g}\left(R-2 \Lambda+\mathcal{L}_{m}\right)
$$

Einstein's grav. constant:
determinant:
Ricci scalar:
cosmological constant:
Lagrangian for the matter fields:

$$
\begin{aligned}
& \kappa=8 \pi G c^{-4} \\
& g=\operatorname{det}\left(g_{\mu \nu}\right) \\
& R=g^{\mu \nu} R_{\mu \nu} \\
& \Lambda=3 / L^{2} \\
& \mathcal{L}_{m}
\end{aligned}
$$

Black hole basics

Einstein-Hilbert action:

$$
S=\frac{1}{2 \kappa} \int d^{4} x \sqrt{-g}\left(R-2 \Lambda+\mathcal{L}_{m}\right)
$$

$$
\downarrow S=0
$$

Einstein field equations for flat space, in vacuит:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda_{g} g_{\mu \nu}=\kappa T_{\mu \nu}
$$

Black hole basics

[^0]The "no-hair" conjecture
All stationary black hole solutions in GR can be completely characterised by three independent, externally observable, and classical parameters:

* mass M,
* electric charge Q,
* angular momentum a.

Black hole basics

Stationary, neutral, spherically-symmetric black hole:

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

The "no-hair" conjecture

$$
f(r)=1-\frac{2 M}{r}
$$

$$
\begin{aligned}
\text { event horizon: } & r_{H}=2 M \\
\text { photon orbit: } & r_{c}=3 M \\
\text { length scale: } & M=G m^{B H} C^{-2}=1 \\
(G=c=1) & \quad \text { Bekenstein }
\end{aligned}
$$

Hawking \& Ells, The Large Scale Structure of Space-time

1957: Regge and Wheeler's grav. perturbations

The birth of black hole perturbation theory:

VOLUME 108 , NUMBER 4
NOVEMBER

Stability of a Schwarzschild Singularity

Tullio Regge, Istituto di Fisica della Università di Torino, Torino, Italy
AND

John A. Wheeler, Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received July 15, 1957)

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small nonspherical perturbation.

$$
\begin{aligned}
g_{\mu \nu} d x^{\mu} d x^{\nu} & =-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
g_{\mu \nu} \rightarrow g_{\mu \nu}^{\prime} & =g_{\mu \nu}+h_{\mu \nu} \quad\left(g_{\mu \nu} \gg h_{\mu \nu}\right)
\end{aligned}
$$

Quasinormal mode: "ringdown"

Quasinormal mode and frequency

$$
\Psi\left(x^{\mu}\right)=\sum_{n=0}^{\infty} \sum_{\ell, m} \frac{\psi_{\text {sne }}(r)}{r} e^{-i \omega t} Y_{\ell m}(\theta, \phi), \quad \omega_{\text {snौ }}=\omega_{R}-i \omega_{I}
$$

$\star \mathbb{R} e\{\omega\}=$ physical oscillation frequency
$\star \mathbb{I} m\{\omega\}=$ damping \rightarrow dissipative, "quasi"

Quasinormal mode: "ringdown"

Quasinormal mode and frequency

$$
\Psi\left(x^{\mu}\right)=\sum_{n=0}^{\infty} \sum_{\ell, m} \frac{\psi_{\text {sne }}(r)}{r} e^{-i \omega t} Y_{\ell m}(\theta, \phi), \quad \omega_{\text {sn }}=\omega_{R}-i \omega_{I}
$$

* s : spin of perturbing field
$\star m$: azimuthal number for spherical harmonic decomposition in θ_{i}
* ℓ : angular/multipolar number for spherical harmonic decomposition in θ, ϕ
* n: overtone number labels QNMs by a monotonically increasing $|\mathbb{I} m\{\omega\}|$

Quasinormal mode: "ringdown"

B. P. Abbott et al., PRL 116, 061102 (2016)

Quasinormal mode: "ringdown"

(i) inspiral
(ii) merger
(iii) ringdown
B. P. Abbott et al., PRL 116, 061102 (2016).

Harmonics and overtones

the fundamental $(\ell, m, n)=(2,2,0)$ mode dominates ringdown

a multimodal analysis of the GW150914 data using PYRING, see Carullo et al.

Quasinormal mode: "ringdown"

Stationary, neutral, spherically-symmetric black hole:

$$
\Psi\left(x^{\mu}\right)=\sum_{n=0}^{\infty} \sum_{\ell, m} \frac{\psi_{\text {sne }}(r)}{r} e^{-i \omega t} Y_{\ell m}(\theta, \phi), \quad \omega_{\text {snौ }}=\omega_{R}-i \omega_{I}
$$

Due to symmetries, only 2 ODEs needed:

Quasinormal mode: "ringdown"

Stationary, neutral, spherically-symmetric black hole:

$$
\Psi\left(x^{\mu}\right)=\sum_{n=0}^{\infty} \sum_{\ell, m} \frac{\psi_{\text {snl }}(r)}{r} e^{-i \omega t} Y_{\ell m}(\theta, \phi), \quad \omega_{\text {sn }}=\omega_{R}-i \omega_{I}
$$

Due to symmetries, only 2 ODEs needed:

* Angular behaviour encapsulated by spheroidal harmonics:

$$
\nabla^{2} Y_{m \ell}^{s}(\theta, \phi)=-\frac{\ell(\ell+1)}{r^{2}} Y_{m \ell}^{s}(\theta, \phi)
$$

* s.t. QNM computations depend on radial behaviour

The QNM eigenvalue problem

Black hole wave equation:

$$
\frac{d^{2}}{d r_{*}^{2}} \varphi\left(r_{*}\right)+\left[\omega^{2}-V(r)\right] \varphi\left(r_{*}\right)=0, \quad \frac{d r}{d r_{*}}=f(r)
$$

\rightarrow reduces to a second-order ODE in r

The QNM eigenvalue problem

Black hole wave equation:

$$
\frac{d^{2}}{d r_{*}^{2}} \varphi\left(r_{*}\right)+\left[\omega^{2}-V(r)\right] \varphi\left(r_{*}\right)=0, \quad \frac{d r}{d r_{*}}=f(r)
$$

\rightarrow subjected to QNM boundary conditions
purely ingoing: $\quad \varphi\left(r_{*}\right) \sim e^{-i \omega\left(t+r_{*}\right)} \quad r_{*} \rightarrow-\infty\left(r \rightarrow r_{H}\right)$ purely outgoing: $\quad \varphi\left(r_{*}\right) \sim e^{-i \omega\left(t-r_{*}\right)} \quad r_{*} \rightarrow+\infty(r \rightarrow+\infty)$

Waves escape domain of study at the boundaries \Rightarrow dissipative

Why do we consider extra-dimensional scenarios?

What is the significance of these extra dimensions?
Today: A path to physics BSM?

- 1980s: "KK renaissance", 1984 "superstring revolution"
- 1998: Arkani-Hamed, Dimopoulos, Dvali: large EDs
- 1999: Randall and Sundrum: warped EDs

Why the negativity?

Negatively-curved EDs: a BSM landscape of untapped potential?

Phenomenological implications:

- natural resolution to the hierarchy problem
\rightarrow volume grows exponentially with ℓ_{G} / ℓ_{c}
\rightarrow RSI-like KK mass spectrum w/o light KK modes
- zero modes of Dirac operator emerges w/o gauge breaking
- enables homogeneity and flatness of observed universe

Negatively-curved extra dimensions: the nilmanifold

Any Lie group G of dimension d can be understood as a d-dimensional differentiable manifold. To compactify solvable G, we quotient by the lattice Γ. For nilpotent groups, the resultant twisted torus is a nilmanifold.

$$
\begin{gathered}
{\left[Z_{b}, Z_{c}\right]=f^{a}{ }_{b c} Z_{a}, \quad f^{a}{ }_{b c}=-f^{a}{ }_{b c}} \\
\mathcal{R}=-\frac{1}{4} \delta_{a d} \delta^{b e} \delta^{c g} f_{b c}^{a} f^{d}{ }_{e g}
\end{gathered}
$$

Wikimedia Commons, Torus \mathcal{E} Twisted torus

Negatively-curved extra dimensions: the nilmanifold

Consider the Heisenberg algebra...

$$
\begin{gathered}
{\left[Z_{1}, Z_{2}\right]=-\mathrm{f} Z_{3}, \quad\left[Z_{1}, Z_{3}\right]=\left[Z_{2}, Z_{3}\right]=0} \\
\mathrm{~d} e^{3}=\mathrm{f} e^{1} \wedge e^{2}, \mathrm{~d} e^{1}=0, \quad \mathrm{~d} e^{2}=0
\end{gathered}
$$

$$
e^{1}=r^{1} d y^{1}, \quad e^{2}=r^{2} d y^{2}, e^{3}=r^{3}\left(d y^{3}+N r^{1} d y^{2}\right), \quad N=\frac{r^{1} r^{2}}{r^{3}} \mathrm{f}
$$

...gives us the metric $d s_{\mathcal{N}}^{2}=g_{i j}^{\mathcal{N}} d x^{i} d x^{j}$

Wikimedia Commons, Torus \mathcal{E} Twisted torus

An unconventional QNM application

How can we exploit available GW searches to investigate extra-dimensional scenarios?

Black holes in higher-dimensional space-times

The BH-nilmanifold metric

$$
\begin{gathered}
d s_{7 D}^{2}=g_{\mu \nu}^{B H}(\mathbf{x}) d x^{\mu} d x^{\nu}+g_{i j}^{\mathcal{N}_{3}}(\mathbf{y}) d y^{i} d y^{j} \\
\Psi_{n \ell m}^{s}\left(t, r, \theta, \phi, y_{1}, y_{2}, y_{3}\right)=\sum_{n=0}^{\infty} \sum_{\ell, m} \frac{\psi_{\text {sne }}(r)}{e^{i \omega t} r} Y_{m \ell}^{s}(\theta, \phi) Z\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

$$
\begin{gathered}
d s_{B H}^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2}\left(\sin ^{2} d \theta^{2}+d \phi^{2}\right) \\
f(r)=1-2 M / r \\
d s_{\mathcal{N}_{3}}^{2}=r_{1}^{2} d y_{1}^{2}+r_{2}^{2} d y_{2}^{2}+r_{3}^{2}\left(d y_{3}+N r_{1} d y_{2}\right)^{2}
\end{gathered}
$$

Black holes in higher-dimensional space-times

The BH-nilmanifold metric

$$
\begin{gathered}
d s_{7 D}^{2}=g_{\mu \nu}^{B H}(\mathbf{x}) d x^{\mu} d x^{\nu}+g_{i j}^{\mathcal{N}_{3}}(\mathbf{y}) d y^{i} d y^{j} \\
\Psi_{n e m}^{s}\left(t, r, \theta, \phi, y_{1}, y_{2}, y_{3}\right)=\sum_{n=0}^{\infty} \sum_{\ell, m} \frac{\psi_{\text {se }}(r)}{e^{i \omega} t_{r}} Y_{m \ell}^{s}(\theta, \phi) Z\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

Laplacian of a product space is the sum of its parts

$$
\begin{gathered}
\left(\nabla_{B H}^{2}+\nabla_{\mathcal{N}_{3}}^{2}\right) \sum \Phi(\mathbf{x}) Z_{k}(\mathbf{y})=0, \\
\nabla_{\mathcal{N}_{3}}^{2} Z_{k}(\mathbf{y})=-\mu_{k}^{2} Z_{k}(\mathbf{y})
\end{gathered}
$$

Black holes in higher-dimensional space-times

The wavelike equation

$$
\begin{gathered}
\frac{d^{2} \psi}{d r_{*}^{2}}+\left(\omega^{2}-V(r)\right) \psi=0 \\
V(r)=\left(1-\frac{2 M}{r}\right)\left(\frac{\ell(\ell+1)}{r^{2}}+\frac{2 M}{r^{3}}+\mu^{2}\right)
\end{gathered}
$$

The QNM spectrum

The fundamental mode: $n=0, \ell=2$

Agnostic bounds from ringdown GWs

M M C

Gravitational Wave Open Science Center

LVK's Tests of GR with binary black holes from GWTC-1, GWTC-2, GWTC-3

$$
\begin{aligned}
\delta \omega & =\omega^{G R}(1+\delta \omega) \\
\delta \tau & =\tau^{G R}(1+\delta \tau)
\end{aligned}
$$

PYRING
a python package for ringdown analysis

Agnostic bounds from ringdown GWs

M M C

Gravitational Wave Open Science Center

Data * Software * Online Tools * Learning Resources * About GWOSC -

LVK's Tests of GR with binary black holes from GWTC-1, GWTC-2, GWTC-3

$$
\begin{aligned}
\delta \omega_{\mathrm{O} 3} & =0.02_{-0.07}^{+0.07} \\
\delta \tau_{\mathrm{O} 3} & =0.13_{-0.22}^{+0.21}
\end{aligned}
$$

PYRING
a python package for ringdown analysis

Conclusions

* Rich phenomenology awaits in the mathematicians' playground
\hookrightarrow Connecting theory and observation is non-trivial ("the gap")

Conclusions

* Rich phenomenology awaits in the mathematicians' playground
\hookrightarrow Connecting theory and observation is non-trivial ("the gap")
* QNMs: not just the "fingerprints" of their black hole source

GWA \Rightarrow new opportunities to apply +60 years of research

Conclusions

* Rich phenomenology awaits in the mathematicians' playground
\hookrightarrow Connecting theory and observation is non-trivial ("the gap")
* QNMs: not just the "fingerprints" of their black hole source

GWA \Rightarrow new opportunities to apply +60 years of research

* Detecting modifications to GR is considered to be beyond the sensitivity of modern detectors (still model-agnostic, first-order, etc.)

Conclusions

* Rich phenomenology awaits in the mathematicians' playground
\hookrightarrow Connecting theory and observation is non-trivial ("the gap")
* QNMs: not just the "fingerprints" of their black hole source

GWA \Rightarrow new opportunities to apply +60 years of research

* Detecting modifications to GR is considered to be beyond the sensitivity of modern detectors (still model-agnostic, first-order, etc.)
* Here, we have determined a QNM detectability bound on extra dimensions
\hookrightarrow roadmap for new model-agnostic extra dimensions search

Thank you

Acknowledging the support of

[^0]: Hawking \& Ells, The Large Scale Structure of Space-time

