Contribution ID: 18 Type: not specified

Numerical Modeling and Optimization of CaZrS3 chalcogenide Perovskite Solar Cell by Using SCAPS-1D with theoretical efficiency approaching 20%

Wednesday, 16 November 2022 11:30 (30 minutes)

1. Introduction

Chalcogenide perovskites ABX3 (A=Alkaline earth metals; B=Transition metals; X=S or Se) have recently been studied, but they still need to be rigorously tested under various conditions. Several experimental studies on these materials have been conducted [1] [2]. Zr-based chalcogenide perovskites (AZrS3, where A is an alkaline earth metal such as Ca, Sr, or Ba) have a d-orbital character, whereas the 4d states are less localized than the 3d states, resulting in a high absorption coefficient and a low effective mass of the charge carriers in these compounds [3].

In this study, a device simulation of CaZrS3 material is reported for the first time, which makes this new study interesting, using the one-dimensional solar cell capacitance simulator SCAPS-1D. Therefore, we tried to propose low cost Electron Transport Materials ETMs (TiO2, ZnO, and SnO2). The influence of thickness, doping concentration (NA), and the working temperature on the device performance were studied.

1. Results

As a result, we have found that for CaZrS3 the most preferment structure is found to be: Au/NiOx/CaZrS3 (Absorber)/ZnO/FTO with a maximum PCE of 19.36%, V_OC of 1.79 V, ⋈ J⋈_SC of 16.13 mA/cm2 and FF of 89.85%.

1. References

- [1] Shaili H 2021 Synthesis of the Sn-based CaSnS3 chalcogenide perovskite thin film as a highly stable photoabsorber for optoelectronic applications J. Alloys Compd. 9
- [2] Zitouni H, Tahiri N, El Bounagui O and Ez-Zahraouy H 2020 Electronic, optical and transport properties of perovskite BaZrS3 compound doped with Se for photovoltaic applications Chem. Phys. 538 110923
- [3] Kumar M, Singh A, Gill D and Bhattacharya S 2021 Optoelectronic Properties of Chalcogenide Perovskites by Many-Body Perturbation Theory J. Phys. Chem. Lett. 12 5301–7

Primary authors: CHAWKI, Najwa (Group of Semiconductors and Environmental Sensor Technologies-Energy Research Center, Faculty of Science, Mohammed V University, B P 1014, Rabat, Morocco); ROUCHDI, Mustapha (Group of Semiconductors and Environmental Sensor Technologies- Energy Research Center, Faculty of Science, Mohammed V University, B P 1014, Rabat, Morocco); FARES, Boubker (Group of Semiconductors and Environmental Sensor Technologies- Energy Research Center, Faculty of Science, Mohammed V University, B P 1014, Rabat, Morocco)

Presenter: CHAWKI, Najwa

Session Classification: Partner

Track Classification: Partner