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Abstract. Previously an equation of state for the relativistic hydrodynamics encountered in
heavy-ion collisions at the LHC and RHIC has been calculated using the QCD trace anomaly
obtained with lattice methods. This lattice calculation extrapolates the trace anomaly to an
infinite system, which neglects the possible finite system size corrections that should be present
in heavy ion collisions. In order to check whether the corrections are indeed negligible at the
scales encountered at these experiments, it is necessary to understand how these corrections
arise in quantum field theories. We construct a massive ϕ4 theory with periodic boundary
conditions on n of the 3 spatial dimensions. 2 → 2 NLO scattering is then computed, while
analytically verifying unitarity remains intact. Due to needing to employ a novel regularization
method dubbed denominator regularization, it was crucial to derive an analytic continuation to
the Generalized Epstein zeta function, which is expected to have applications in further studying
finite size corrections to field theories using denominator regularization.

1. Introduction
In Heavy Ion Colliders such as at the LHC and RHIC, heavy-ions (such as Pb nuclei) are collided
at nearly the speed of light (γ ≫ 10 Lorentz factor). In these heavy ion collisions [1, 2] there
is an apparent formation of Quark Gluon Plasma (QGP) [3], where the correlations between
the outgoing low-momentum particles appear to be well described by nearly inviscid relativistic
hydrodynamics. This calculation uses an Equation of State (EoS) provided by a lattice QCD
calculation that is extrapolated to infinite system size [4].

It is currently unclear what happens in QCD just above the transition temperature T = 180
MeV. There is strong evidence of a second order phase transition, but the nature of the new
phase is unknown. While for large temperatures asymptotic freedom requires that the phase is
essentially an ideal gas, the more complicated behaviour discussed above is found at the relatively
small (and experimentally accessible) temperatures of T ∼ 350MeV. It is therefore necessary to
understand how reliably the behaviour found in the finite systems (such as heavy ion or parton
collisions) can be extrapolated to effectively infinite systems, such as the QGP found in the
∼ 0.000001 seconds after Big Bang. Understanding and modeling this phase is therefore not
only of interest in high energy physics but also in cosmology, in particular in studies of the early
universe.



The dependence of the low viscosity on the lattice QCD calculation of the EoS brings the
underlying assumptions of the calculation under scrutiny. A possible erroneous assumption to
be investigated is that heavy ion collisions can be well approximated as infinite sized systems [5].
Indeed quenched lattice QCD calculations have shown significant possible corrections dependent
on the size of the system [6]. An analytic derivation of the finite size effects on the equation
of state (or equivalently the trace anomaly) is therefore sought. This work is a step in that
direction, with the intention to develop and understand the mathematical techniques necessary
for a full treatment necessary for finite temperature finite sized QCD.

2. Finite Sized ϕ4 Theory
Let us consider the ϕ4 Lagrangian
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in a system with periodic boundary conditions. If we consider n compact spatial (and 1 infinite
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in n = 3 spatial dimensions that up to NLO
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We now safely perform the ℓ0E integral to get

V (p2, {Li}) = −1

2

∫ 1

0
dx

1

(2π)4L1L2L3

√
πΓ
(
3+ϵ
2

)
2Γ
(
4+ϵ
2

) ∑
k⃗∈Z3

µϵ

[
∑3

i=1(
ki
Li

+ x pi)2 +∆2]
3+ϵ
2

. (4)

The sum at the end of Equation 4 can be related back to the generalized Epstein zeta function,
so we will need to find some useful analytically continued form of it in order to regularize
Equation 4 properly. It is noted that the use of denominator regularization and the generalized
Epstein zeta function should not be confuse with zeta function regularization, which is a distinct
regularization procedure.

3. Generalized Epstein zeta Function
We have seen above that we require an analytic continuation of the generalized Epstein zeta
function [9], which would allow us to isolate the divergence in Equation 4. Let us then explicitly
define
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∑
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[
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, (5)



where repeated indices are implicitly summed over. We can now employ the Poisson Summation
formula over an n-dimensional lattice Λn with lattice dual Λ∗n, which is given by∑

m⃗∈Λn
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where F is the Fourier transform given by F (k⃗) ≡
∫
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interested in
f(m⃗) =

[
a2im

2
i + bimi + c− iε

]−s
, (7)

with some ε > 0 is introduced to ensure no poles are integrated over. We can then calculate
(where all suppressed indices of sums and products runs from i = 1 to i = n):
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We can now see that that integral almost looks like the Fourier transform of some radial function
over a lattice with lattice spacings ai, so we can actually use the formula for a Fourier transform
of a radial function[10] to get
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While this might look intimidating, this integral (with 0F1 being the generalized hypergeometric
function) can be evaluated using software such as Mathematica to get (valid for Re(s) > n
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where Kν(z) is the modified Bessel function of the second kind. For the k⃗ = 0⃗ case we can either

very carefully take the limit, or redo the above calculation with k⃗ identically 0⃗. Both yield
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Since we were careful with keeping track of the lattice spacings of the dual lattice, we can
now plug our results straight into the Poisson summation formula to get (after expanding
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which agrees with previous results [8]. Note that
∑′

above denotes that it does no sum over 0⃗.

4. Amplitude and Unitarity
We can now substitute Equation 14 into Equation 4 which gives in n = 3
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Then using a modified MS subtraction scheme, we can get the renormalized
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Here we can recognize the ln term as corresponding to the standard result in infinite ϕ4 systems
[7]. As one would then expect the second term in the integral vanishes in the limit as all
Li → ∞ since limx→∞K0(x) = 0. We can also see that we can reduce the effective number of
finite dimensions by quite simply taking the corresponding Li → ∞, since only terms in the sum
with the corresponding ki = 0 will survive the limit. We can then find that, as in the infinite
system case,

M = λ
[
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)]
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up to NLO, with s, t and u being the Mandelstam variables. The optical theorem then requires
that the total cross-section

σtot = 2Im(M). (18)

By then setting Li = L and introducing R = L
√

s
4 −m2, one can then find that

σtot =
λ2

16π

π
1−n
2

Γ
(
3−n
2

) 1

L
√
s

∑∗

0≤l<R2

rn(l)√
R2 − l

n−1 (19)

and

2Im(M) =
λ2

16π

1

L
√
s

1

π
n−1
2 Γ

(
3−n
2

) ∑∗

0≤l<R2

rn(l)√
R2 − l

n−1 , (20)

showing that the amplitude respects the optical theorem, and equivalently our S-matrix is
therefor unitary.



5. Conclusion
The analytic continuation of the generalized Epstein zeta function presented here was shown
to give a self-consistent theory up to NLO in finite sized ϕ4 theory. It is hugely valuable for
regularizing and renormalizing in this finite system, and one can expect that it will be in other
finite sized field theories as well. We have therefore shown a derivation of the formula, shown
it leads to self-consistent results (and limits to the standard infinite system result) and shown
how it is necessary in the above calculation.
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