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Abstract. Recent work has shown that searches for diffuse radio emission by MeerKAT - and
eventually the SKA - are well suited to provide some of the strongest constraints yet on dark
matter annihilations. To make full use of the observations by these facilities, accurate simulations
of the expected dark matter abundance and diffusion mechanisms in these astrophysical objects
are required. However, because of the computational costs involved, various mathematical and
numerical techniques have been developed to perform the calculations in a feasible manner.
Here we provide the first quantitative comparison between methods that are commonly used in
the literature, and outline the applicability of each one in various simulation scenarios. These
considerations are becoming ever more important as the hunt for dark matter continues into a
new era of precision radio observations.

1. Introduction
Despite decades of work, indirect Dark Matter (DM) searches – those that look for the emissions
from the annihilation and decay products of DM particles – are yet to find a signal that can be
solely attributed to DM. Until such a detection is made, and as our observing capabilities improve
with newer and more sophisticated telescopes, we continue to methodically move through the
parameter spaces of candidate DM models and eliminate those that conflict with the data. The
recent public release of the MeerKAT Galaxy Cluster Legacy Survey data [1], together with recent
studies that show the competitiveness of using radio emissions for DM indirect detection [2, 3, 4],
provides strong motivation for a renewed and continued effort in radio DM searches. In this work
we take a brief but detailed look at the various theoretical aspects involved in the modelling of
radio emissions from WIMP DM, and comment on how the choice of model will likely play an
important role in indirect DM searches with high-resolution instruments.

Our analysis includes simulations of the DM host environments for two source targets, the
Coma galaxy cluster and the M31 galaxy, and a calculation of the synchrotron emissions resulting
from WIMP annihilations therein. We model our DM halos with a set of reasonable source
parameters and find the emissions after solving the electron propagation equation in each
environment. The solution to this equation is one of the major focus points of this work, as
the choice of technique used can lead to a non-negligible change in the observed emissions,
particularly in smaller source targets where diffusion effects are significant. With < 10 arcsecond
resolution capabilities, observations with MeerKAT (and soon the SKA) are for the first time
able to probe the inner regions of these targets, which are where the strongest constraints on
DM can be found. Therefore, accurate spatial modelling of these targets is essential for us to
make full use of the new data.



2. Modelling
The two source targets in this work, the Coma galaxy cluster and the M31 galaxy, were chosen
for their well characterised properties in the literature. Of particular importance are the profiles
of their magnetic fields and thermal gas densities; as these quantities appear in the modelling
process (but are often underspecified) the uncertainty of the final solution depends strongly
on the treatment of these factors [5]. However, since the simulation of the halo environment
is not the central focus of this work (and for the sake of brevity), we refer the reader to the
following sources for details regarding the parameters in the Coma cluster [6, 7] and in the M31
galaxy [8, 9].

In each halo environment, the emission of synchrotron radiation will be determined by the
equilibrium distribution (ψ) of charged particles – in this work considered to be electrons and
positrons. The evolution of these particles over time is given by the following propagation
equation, which includes the dominant effects of energy losses and spatial diffusion:

∂ψ(x, E)

∂t
= ∇ · (D(x, E)∇ψ(x, E)) +

∂

∂E
(b(x, E)ψ(x, E)) +Q(x, E). (1)

Here D, b and Q are the diffusion, energy-loss and DM annihilation source functions respectively,
and the determination of the exact forms of these functions follows the methods laid out in [5].

2.1. Solving the propagation equation
We determine the equilibrium electron distribution ψ using two independent techniques. The
first, referred to here as the ‘Green’s method’ [2, 10], uses a Green’s function with simplified
forms of D and b to calculate Eq. 1 semi-analytically. The second, referred to as the ‘ADI
method’ [11, 12], uses a numerical approach to solve Eq. 1 iteratively. In both methods we
consider the halo environment to be spherically symmetric, so that x → r. As our methodology
closely follows the above-mentioned literature, we only summarise these methods and point out
any major differences in the following sections.

Green’s method If the forms of the diffusion and energy-loss functions are simplified so that
they have no spatial dependence, a solution to Eq. 1 can be found directly with the use of
Green’s functions and image charges. However, these simplifications often have an impact on
the calculated emissions (for a review on this topic, see [5]). In this work we use non-weighted
averages for the magnetic field and thermal gas densities, found using an averaging scale radius
that matches the scale radius of the DM halo. This choice encapsulates the region in the halo
that contains the majority of WIMP annihilations – and thus best represents the spatial structure
of the halo – while allowing us to forgo any explicit spatial dependence in Eq. 1. Now, the
equilibrium distribution of electrons in the halo can be calculated using

ψ(r,E) =
1

b(E)

∫ mχ

E
dE′G(r,∆v)Q(r,E′) , (2)

with mχ as the WIMP mass and the Green’s function (G) given by

G(r,∆v) =
1√

4π∆v
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0
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′
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4∆v

)
Q(r′)

Q(r)
. (3)

Here rmax is the maximum radius for any diffusion processes and rn = (−1)nr + 2nrmax are the
image charge locations. The quantity ∆v is calculated as

∆v = v(u(E))− v(u(E′)), (4)
where

v(u(E)) =

∫ u(E)

umin

dxD(x) and u(E) =

∫ Emax

E

dx
b(x)

. (5)



ADI method In this method, we discretise Eq. 1 and solve for the equilibrium distribution
iteratively. Since we now keep the spatial (radial) dependence in the diffusion and energy
loss functions, the problem becomes 2-dimensional in energy and space. Using a traditional
finite-difference technique in this scenario could be computationally expensive, which is why we
opt for a method that uses so-called ‘operator splitting’ to treat each dimension separately and
divide the problem into smaller, more manageable pieces. Thus, during each step of the method
we use a general form of the 1-dimensional Crank-Nicolson (CN) scheme (see, for instance, [13])
which is a finite-differencing technique that includes the average of second-order implicit and
explicit terms in the updating equation, leveraging the unconditional stability of a fully implicit
method while maintaining second-order accuracy in space and time. This scheme is relatively
easy to solve, as the updating equation turns out to be a set of linear equations with tridiagonal
coefficient matrices. We write this, as in [11, 12], as

− α1

2
ψn+1
x−1 +

(
1 +

α2

2

)
ψn+1
x − α3

2
ψn+1
x+1 =

α1

2
ψn
x−1 +

(
1− α2

2

)
ψn
x +

α3

2
ψn
x+1 +Qx∆t. (6)

Here the factors of the diffusion and energy loss functions have been included generally in the
coefficients α, n is the temporal grid index (with the spacing between indices given by ∆t) and x
represents either the energy or spatial grid index. Before the correct forms of the α coefficients
are calculated, we make the variable transformations r̃ = log10(r/r0) and Ẽ = log10(E/E0)
(similarly to [12], except with base 10 instead of e). These variables allow us to more accurately
track the electron distribution in our grids when the involved processes operate over a wide range
of physical scales. The diffusion and energy loss operators are then discretised as follows:
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for radius and
∂

∂E
(bψ) → C−1

Ẽ

[
bψj+1 − bψj

∆Ẽ

]
Ẽj

(8)

for energy, where Cr̃ = (r0 log(10)10r̃i), CẼ = (E0 log(10)10Ẽj ) and ∆r̃, ∆Ẽ represent the radial
and energy grid spacings, respectively. We use i and j to denote positions in the radial and
energy grids, and have omitted the temporal indices as these forms will apply to both implicit
and explicit terms in the same way. Also note that in the case of energy losses, we only consider
upstream differencing. The α values can now be found by taking Eqs. 7 and 8 and equating
coefficients with Eq. 6; once these are found the updating equation can be solved with some
matrix solution algorithm. If we represent the discretisation schemes shown above by the symbol
Ψ, the overall iterative solution can be summarised with the steps

ψn+1/2 = ΨẼ(ψ
n)

ψn+1 = Ψr̃(ψ
n+1/2) , (9)

which are repeatedly solved (using Eq. 6) until the value of ψ has converged to the equilibrium
value. The other minutiae of this method, including initial and boundary conditions, convergence
criteria and stability considerations, can be found in [11, 12].

2.2. Synchrotron emissions
Once found via the Green’s or ADI methods, the equilibrium distribution is used to calculate
the radio emissivity, given by

jsync(ν, r) =

∫ Mχ

0
dE ψe±(E, r)Psync(ν,E, r) , (10)



where ν is the synchrotron frequency, ψe± is the sum of electron and positron equilibrium
distributions and Psync is the power emitted by an electron with an energy of E (this is calculated
as in [2]). The emissivity is then used to calculate the two main results in this work; firstly the
surface brightness curves,

Isync(ν,R) =

∫
dl
jsync(ν,

√
R2 + l2)

4π
, (11)

where l is the line-of-sight to a point in the halo at radius R, and secondly the integrated flux
density,

Ssync(ν,R) =

∫ R

0
d3r′

jsync(ν, r
′)

4π(d2L + (r′)2)
, (12)

where the emissivity is integrated over the region enclosed by R and dL is the luminosity distance
to the target.

3. Results
Here we provide the details of the simulations we have performed, and show the results for two
observables - the radio surface brightness (Eq. 11) and integrated flux (Eq. 12). We use a set of
reasonable source parameters for the halo environment that respect observational constraints,
and aim to use WIMP parameter values that are representative of the many viable candidates.
We thus consider a large range of particle masses, from 10 to 1000 GeV, and use a set of four
annihilation channels, {bb, e+e−, µ+µ−, τ+τ−}.
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Figure 1. Surface brightness curves for the Coma galaxy cluster. Each of the four panels show
different annihilation channels, given by the label in the top right of each plot. The two methods
are represented by the two colours, and the shaded region represents the WIMP mass range
between the minimum (10 GeV) and maximum (1000 GeV). In these results we set ν = 0.5 GHz.

These results do not comprehensively cover the available parameter spaces; the focus here is
on a comparison between the two solution methods, particularly in the way that they differ with
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Figure 2. Surface brightness curves for the M31 galaxy. Plot details follow those in Figure 1.
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Figure 3. The integrated fluxes, calculated using Eq. 12, for the Coma galaxy cluster (left) and
the M31 galaxy (right). The different linestyles represent the two solution methods presented in
Sec. 2.1, and each colour indicates the use of a different annihilation channel.

various source targets. Therefore, we show the results for each method side-by-side, and in the
same manner for both of our source targets. In Figs. 1 and 2 we show the surface brightness
curves for the Coma cluster and M33 respectively, and Fig. 3 shows the integrated flux from
these targets in the left- and right-hand panels, for a range of frequencies. The flux in these cases
are calculated over the entire halo, i.e. from the centre up to the virial radius.

4. Discussion and conclusions
In Figs. 1 and 2, we see generally good agreement between the Green’s and ADI methods,
which provides evidence for consistency between the methods. Noticeably however, we see more
variation between the methods in the M31 galaxy than we do for the Coma galaxy cluster. Our
explanation for this lies in the mathematical techniques employed by each method, and how



they each treat the spatial dependence of the diffusion function in particular. In the galaxy
cluster environment of Coma, diffusion effects are negligible on sufficiently large scales [10, 5],
whereas in the physically smaller galaxy, diffusion effects start to influence the surface brightness
distribution at all relevant scales. Since the Green’s and ADI methods use a spatially independent
and dependent diffusion function (respectively), the resulting equilibrium distribution from these
two methods begins to differ in the environments where the scales in question do not greatly
exceed the diffusion length. This trend is also seen in the fluxes from Fig. 3, which show a clear
variance in all channels for the M31 galaxy, and relative agreement for all channels in the Coma
cluster. Based on these results and the comparison of target environments presented in [5], we
also expect that smaller target environments (like the dwarf spheroidal satellite galaxies of the
Milky Way) would show further variance between the solution methods, as diffusion effects would
be even more significant in these environments.

The other notable result we see from these simulations is that the methods differ on small
scales, even in the large Coma cluster. This is significant, as the inner regions of the DM halos
are where we would observe the strongest emissions. With high-resolution radio interferometers
allowing us to resolve these smaller scales, our models could be tested against the strongest
possible DM emissions, allowing us to find the most stringent constraints on DM properties. In
this regard, the surface brightness curves displayed here would be especially valuable results
when determining new observational limits, as their emission profiles are highly dependent on
the spatial structure of the DM halo.

With the impressive spatial resolution of telescopes like MeerKAT and the SKA, we are now
able to probe the inner regions of these DM halos – regions which have formerly been hidden
from our view. The need for accurate modelling techniques is thus more necessary than ever
before, and the considerations presented in this work should help inform the modelling choices
made in future radio searches for DM.
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