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Abstract. Machine learning methods have recently found applications in many areas of physics, 

chemistry, biology, and materials science, where large datasets are available. In this paper, 

machine learning regression techniques are applied to a large amount of density functional theory 

calculated data to develop machine learning models capable of accurately predicting the 

formation and total energy of sodium-ion battery cathode materials.  Amongst various algorithms 

that were evaluated, the Bayesian ridge model was found to be the best model in predicting the 

formation energy with an accuracy of 0.99 and 0.01eV coefficient of determination and mean 

square error, respectively, and final energy with 0.98 and 0.03eV accuracy for the coefficient of 

determination and mean square error, respectively. The results show that the descriptors used to 

predict the energies have a predictive capacity with a high accuracy.                            

1.  Introduction 

    The development of energy storage and conversion devices is essential to reduce the discontinuities 

and instability of renewable energy generation [1]. New eco-friendly energy sources are necessary in 

the current era, as they are expected to reduce greenhouse gas emissions and ultimately benefit human 

health. Over the past two decades, lithium-ion batteries (LIBs) have dominated the portable electronics 

industry and solid-state electrochemical research [2]. Due to the use of LIBs in portable electronics such 

as laptops, electric vehicles, and cell phones, lithium-ion batteries have received a lot of attention [3]. 

Among the most favourable characteristics of Li-ion batteries are their longer lifetime, higher energy, 

high efficiencies, and power densities. Despite their success, lithium-ion batteries are expensive to 

produce due to limited lithium resources in the Earth’s crust and, in addition, large-scale energy storage 

is not possible with this technology. 

    Despite concerted efforts to develop novel materials for energy storage technologies, there is a 

continuous need for technologies that can push the limits on material properties [4]. Alkaline-ion 

batteries have developed rapidly in recent decades due to their high energy density and environmentally 

friendly properties [1], these batteries have gained a good reputation as alternatives to LIBs due to the 

high abundance of Na- and K-ions in the environment. Sodium-ion battery (SIB) technology has gained 

the privilege of enabling new and more demanding applications for large-scale energy storage systems 

than LIBs); this is due to the high abundance of sodium-ion resources present in the Earth’s crust and 

seawater [5, 6]. Quantum mechanical methods have been shown to be successful in predicting and 

finding functional new materials, such as SIB materials, to replace LIB materials; however, the 



 

 

 

 

 

 

calculations are computationally expensive and time-consuming. The lack of suitable electrodes and 

electrolyte materials has limited the development of sodium-ion batteries. In this context, the data-driven 

machine learning (ML) approach has recently found ways to address material discovery at a faster rate 

and with limited use of computational resources. 

    Previous studies have shown that a combination of density functional theory (DFT) and machine 

learning (ML) methods can accelerate the prediction of material properties and the discovery of novel 

materials [7, 8]. Machine learning models and algorithms are increasingly applied in battery materials 

research, with superior time efficiency and high accuracy in property prediction.  Some examples 

include successful application to predict the properties of battery material properties [9-11] and 

discovery of new battery materials [12, 13]. In this paper, we develop machine learning models capable 

of accurately predicting the formation and total energy of sodium-ion battery cathode materials.  

2.  Methodology 

 

    Machine learning algorithms are typically expressed as a computer program that can learn from 

experience (E) with respect to some class of tasks (T) and the performance measure (P) [1]. Thus, ML is 

simply denoted as ˂P, T, E˃. If its performance in tasks in T, measured by P, improves with experience 

E. It is not the purpose of this paper to discuss details on the theoretical background of machine learning 

methods, models, and their applications in materials science; however, more details can be found 

elsewhere in the literature [14]. With regard to materials science, the ML process consists of the three 

key steps summarized in the following subsections. 

 

2.1.  Sample construction  

     In this step, there are two important activities, namely data curation and feature engineering. The 

data are cleaned, pre-processed, while features are engineered to help improve the accuracy of property 

prediction. Pymatgen Materials Genomes was used to extract materials data from the Materials Project 

Database [15], which contains 7397 different sodium containing materials with different properties 

calculated using DFT. Chemical descriptors were used to construct machine learning features based on 

fundamental atomic properties, such as the chemical formula and atomic number. Feature vectors are 

then generated from details of the chemical formula. The features extracted from the Materials Project 

include formation_energy_per_atom, final_energy_per_atom, energy, Fermi_energy, 

energy_above_hull, density, and bandgap. To obtain the chemical name (X) of a material, an algorithm 

was developed to generate a set of chemical and physical descriptive attributes in which the energies 

(Y) were predicted. Descriptor attributes were used to predict formation and final energy in this study. 

2.2.  Model development  

    Model development is a black box that links the input data to the output data employing a set of 

functions, which can be either linear or non-linear based on the input data. The models were developed 

using a Scikit library machine learning module and a Python code. The data was divided into 70% train 

set and 30% test set. The tested models include the Bayesian ridge (BR), gradient boosting regressor 

(GBR), light gradient boosting machine (LGBM), extra trees regressor (ETR), orthogonal matching 

pursuit (OMP), and random forest regressor (RFR) among others. Detailed descriptions of all these 

models [16-18] and their application in materials science can be found elsewhere [14, 19]. 

 

2.3.  Model evaluation  

    The model evaluation step involves evaluating and validating the performance accuracy of the 

developed models. A model is evaluated using different evaluation metrics to measure its performance. 

In this case, to evaluate the accuracy of the model, we compared the calculated DFT properties with the 

values predicted by the ML model employing K-fold cross validation. For the light gradient boosting 

machine, the hyperparameters used include the number of trees = 1000, the maximum depth = 3 and the 

regularization of L2 = 1 without cross validation and the number of trees = 350, maximum depth = 10 



 

 

 

 

 

 

and L2 regularization = 10 with cross validation. The hyperparameter used for the Bayesian ridge model 

iteration = 350 without cross validation and iteration = 50 with cross validation. The following precision 

measures were used to evaluate the performance of the model: coefficient of determination (R2) and 

mean square error (MSE). 

Coefficient of determination is computed using the formula:    R2 = 1 −
∑ (yi −i ŷi)²

∑ (yi −i y̅i)²
,                          (1)  

where yi, are the observed true DFT values, ŷi are the ML predicted values, and ȳ is the mean value of 

the i-th sample and the sample size of the testing set. It is recommended that an R2 reading of 0.8 or 

higher is adequate for a good reading, indicating that the model is fitting well. The MSE provides an 

indication of the quality of the model and is defined as: 

MSE = 
1

𝑛
∑ (yi − ŷi)²n

i =1                                                                                                                          (2)  

where yi are the observed true DFT values, ŷi are the predicted ML values of the i-th sample and n is the 

number of data points. Zero mean square error shows that the model predicted 100% correct actual 

values; hence the model must achieve MSE closer to zero. 

3.  Results and discussion 

3.1.  Feature engineering 

    Figure 1 shows 18 x18 matrix correlation heatmap ranging from -1 to 1 with squares representing the 

relationship between variables to predict both the formation and total energy of sodium containing 

materials.   When the correlation is close to 1 or -1, it implies that the variables have a strong relationship. 

In addition, a value closer to zero indicates that the two variables are not linearly related. Since all the 

diagonals are -1 (black) or 1(fawn), there is a perfect correlation. A larger number and darker or lighter 

colour indicate a stronger correlation between the two variables. In this study, 18 descriptors were 

considered and evaluated in order to determine the important descriptors in predicting the energies and 

average covalent radius and average single bond covalent radius were found to be the most important 

features, as can be seen on the heatmap by both correlations closer to one and the light fawn colour, both 

feature correlations range between 0.82 and 0.99.   

 

 
Figure 1. Correlation heatmap for predicting the formation energy and total energy 

3.2.  Model selection  



 

 

 

 

 

 

    The best model is selected on its capability to predict the target property, in this case formation and 

total energy. Figure 2 illustrates the measures of the predicted coefficient of determination for the 

formation (left) and final energy (right) as determined by various models while Figure 3 shows the 

measures of the predicted formation energy MSE (left) and final energy MSE (right) as determined by 

various models. During model tuning, data is pre-processed using statistical normalization, then 

hyperparameters are optimized using cross-validation score. The tuned algorithm is fitted to the training 

data, which comprised 70%, and the learned model is then applied to the test data, which comprised 

30%. Various models are evaluated by resampling on data collected outside the sample (or, more 

precisely, the development process of the model). Amongst the developed models, the Bayesian ridge 

was found to be the best model based on its accuracy in predicting the energies. 

 

                       
Figure 2. Measures of predicted formation energy coefficient of determination (left) and final energy coefficient of 

determination (right) as determined by various models 

 

                                      
Figure 3. Measures of predicted formation energy mean square error (left) and final energy mean square error (right) as 

determined by various models 

3.3.  Model validation 

     

    Figure 4 shows graphical representations of model performance in the training set (left) and the test 

set (right), containing data points that reflect the predicted formation energy as a function of the DFT 

calculated formation energy obtained using Bayesian ridge regressor.  Bayesian ridge regression is found 

to be the best performing model with the predicted formation energy achieving a coefficient of 

determination R2 of 0.99 and an MSE of 0.01eV. LGBM predicted formation energy poorly with a 

coefficient of determination of 0.59 and a mean square error of 1.40 eV for the training set and the 

coefficient of determination under the testing set was found to be 0.55 and a mean square error of 1.51 

eV. Due to this poor performance of LGBM, features that did not add value to the prediction of the 

formation energy were then removed in order to determine the role that feature vectors play on model 



 

 

 

 

 

 

performance. The models were trained again with few feature vectors (we removed density and band 

gap) and found to improve the performance to 0.69 and 0.01 eV for R2 and MSE, respectively.     

 

                 
Figure 4. Parity plot of Bayesian ridge model predicted formation energy versus DFT formation energy model performance 

in train set (left) and test set (right)    

 

    Figure 5 shows a graphical representation of the model performance in training set (left) and test set 

(right), containing data points that reflect the predicted final energy as a function of DFT calculated final 

energy obtained from the Materials Project database. Bayesian ridge regression with elemental 

descriptors predicted the final energy, achieving a coefficient of determination R2 of 0.98 and an MSE 

of 0.03eV. Later, the performance of the optimized algorithm gave an MSE of 0.04eV and an R2 of 0.97 

through model tuning. For the best advantage, all the points should pass through the diagonal regressed 

line, and the model Bayesian ridge resulted in a high regression score. Based on the small difference 

between the train and test-model performance results, it is evident that the models were not overfitted. 

                                       
Figure 5. Parity plot of Bayesian ridge predicted final energy versus DFT final energy model performance in train set (left) 

and testing set (right) 

4.  Conclusion 

 

    The machine learning models were successfully developed, from which the formation and final 

energies of various sodium-ion battery materials were predicted. The average covalent radius and the 

average single-bond covalent radius were the most important features for predicting the formation and 

final energy of these materials. Several models were evaluated, and the best model was selected based 

on its accuracy in predicting the afore-mentioned energies. Amongst the various algorithms that were 

evaluated, Bayesian ridge model was found to be the best model with the following accuracy measures: 

coefficient of determination R2 of 0.99 and 0.98 for formation and final energy respectively, mean square 

error of 0.01 and 0.03eV for formation energy and final energy respectively. The machine learning 

models were further validated, from which the DFT calculated properties were compared with their 

corresponding predicted machine learning values. There is good agreement between the model on the 
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train and the test set. Machine learning models can yield accurate material properties faster, making 

them useful in materials-properties prediction.   
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