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Abstract. Energy storage is a major challenge in the development of viable storage devices to sustain many electronic devices. Graphene oxide (GO) has been suggested as a promising material for improved energy density in storage devices. In this study, GO was prepared by modified Hummer’s method using graphite, KMnO4, H2SO4 and H3PO4. From Fourier Transformed Infrared Spectroscopy analysis, the transmittance broad band of carbonyl and hydroxyl were present indicating the successful oxidation of graphite. Furthermore, Ultraviolet-Visible spectra support this suggestion with the highest absorption peak at 905 nm, from highest occupied molecular orbital and lowest occupied molecular orbital structures show a band gap of -2.327eV and further confirm that GO can be a very good material for supercapacitors.
1. Introduction
Nanotechnology provides essential improvement potential for the development of efficient renewable energy storage (Zhang et al., 2013; Pomeratsea et al., 2016). Application of nanotechnology in renewable energy storage, involves designing and developing of new innovative material properties on the nanoscale dimension to enhance efficiency of energy storage (Manaktala and Singh, 2016). The most commonly used energy storage devices are batteries. However, their reliability does not seem to stand the ever-growing demands in technological applications (Oyeniran, 2018). On the other hand, supercapacitors seem to be a perfect alternative to batteries for energy storage applications.
Physical and chemical properties of nanomaterials differ from one nanomaterial to another, and this can subsequently affect their efficiency in renewable energy storage. As a result, the search for new nanomaterials with relatively better electrochemical properties has spiked in recent years. In addition, researchers are exploring ways to modify properties of nanomaterials for enhanced performance such as high-power density, energy density and cycle stability. This has resulted in the focus on carbon-based nanomaterials for energy applications (Avouris and Dimitrakopoulos, 2012; Ghorbani et al., 2015; Li et al., 2015; Raja et al., 2015; Wang et al., 2017; Antink et al., 2018; Jayachandiran et al., 2018; Chaudhary et al., 2019).
Carbon materials are suitable electrode materials for supercapacitors because of their readily availability, structural diversity, cost-effectiveness and large active surface area (Paul and Dai, 2018; Jana et al., 2019). In addition, the flexibility of these materials permits modification and characterization to meet specific requirements for different applications (Paul et al., 2019).
The aim of this study was to synthesize, characterize and simulate graphene oxide (GO) using both experimental and theoretical methods. In particular, Density Functional Theory (DFT) method was used to investigate the optical properties; whereas experimental methods were utilized to investigate the oxygen functional groups of the synthesized material.
2. Methods and materials
2.1. Experimental method
The preparation process of GO involved two steps: oxidation and exfoliation. These steps are described in detail below:
Step 1: Oxidation 
Graphite powder of 1 g and potassium permanganate (KMnO4) of 9 g were mixed with 180 ml of sulphuric acid (H2SO4), together with 20 ml of orthophoric acid (H3PO4) and stirred using a magnetic stirrer for about 19 hours at a temperature of 40 oC. When the colour of the mixture turned greenish, the, distilled water of 500 ml was added to stop the reaction. Thereafter, 20 ml of hydrogen peroxide (H2O2) was added to reduce manganese ions in the mixture until the colour of the mixture changed to bright yellow, which is an indication of oxidation process completion (Arthi G et al., 2015).
The oxidized mixture was then kept at a room temperature to cool down. After cooling, it was filtered for two days using filter paper. The filtered product, which looked like paste, was washed utilizing 5 % of hydrochloric acid (HCl) for 3 hours and thereafter washed using distilled water for 1 hour with the aid of centrifugation.
Step 2: Oxfoliation
The GO product which was found after centrifugation was dispersed into 100 ml of distilled water for the formation of single-layer GO, and then it was heated while stirring with a magnetic stirrer for 19 hours at 60 oC. Then the resulted black paste was collected by centrifugation and dried at temperature of 70 oC for 24 hours.
2.2. Computational software
DFT is a computational quantum-mechanical modelling method aimed at quantitative understanding of material properties from the fundamental laws of quantum mechanics (Kurth et al., 2005). The theoretical study of GO was done by Material Studio computing software of DFT. Material Studio is a software for simulation and modelling materials. It is used for studying various materials such as ceramics, metals, polymers etc. Inside Material Studio there is a package code called Vienna ab initio molecular dynamics (VAMP). The structure of GO was built using Material Studio and calculation were done using VAMP, which was used for calculation of optical properties of GO using Ultraviolet Visible (UV-VIS) spectrum.
2.3. Characterization techniques
2.3.1. [bookmark: _Toc107495163]Fourier Transformed Infrared Spectroscopy: Fourier Transformed Infrared Spectroscopy (FTIR) measures how much light a sample absorbs at each wavelength. This is achieved when the emitted radiation from an IR source passes through an interferometer composed of a beam splitter, a fixed mirror, and a moving mirror. The interferometer measures the wavelength of emitted light via interference patterns that help to increase accuracy. IR spectra are obtained by applying IR radiation to a sample and measuring the intensity of the passing radiation at a specific wavenumber. Consequently, IR radiation of certain molecular groups can be detected at specific wavenumbers (Faghihzadeh et al., 2016). FTIR is generally used to identify and compare the oxygen functional groups of carbon-based electrode materials (Cheng et al., 2011; Cao and Zhang, 2014; Hidayah et al., 2017).

2.3.2. [bookmark: _Toc107495165]Ultraviolet-Visible Spectroscopy: Ultraviolet-Visible Spectroscopy/Spectrophotometry (UV-VIS), is an optical spectroscopy that is based on the absorption of ultraviolet and visible light by a sample and also corresponds to electronics excitation between the energy levels which provides the molecular orbitals, highest occupied molecular (HOMO) and lowest occupied molecular (LUMO). The absorption or reflectance in the visible spectral range directly affects the perceived colour of the chemical components involved. A UV-VIS measures the intensity of light passing through a sample solution in a cuvette, and compares it to the intensity of the light before it passes through the sample. UV-VIS can be used to examine the optical features, electronic structures of materials and to monitor the degree of oxidation of carbon nanomaterials (Hidayah et al., 2017).
3. Results and discussion
3.1. FTIR results
From FTIR analysis, there is transmittance broad band between 3100 to 3300 cm-1 hydroxyl group(O-H) and spectral troughs at 1730 cm-1 and 1018 cm-1 which are attributable to carbonyl group (C-O) and indicating the successful oxidation of graphene single layer of graphite after being exfoliated (Figure 1).
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Figure 1: FTIR of graphite and graphene oxide
3.2. Optical properties results
3.2.1. UV-Vis spectrum: VAMP calculations, UV-Vis spectra shows the highest absorption peak at 905 nm and the visible light absorption ranging from 700 nm to 1500 nm (Figure 2).
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Figure 2: UV- Vis spectrum of GO.
3.2.2. [bookmark: _GoBack]HOMO and LUMO: The results in figure 5 show the occupied and unoccupied orbitals of semiconductor band of GO. HOMO as highest occupied molecular orbitals and LUMO as lowest unoccupied molecular orbitals.
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Figure 3: HOMO and LUMO structures.

4. Conclusion
Graphene oxide (GO) shows presence of many oxygen-containing surface functional groups of carbonyl and hydroxyl in FTIR. However, the energies of HOMO and LUMO of GO are, -7.217 eV and -4.89 eV, respectively with the band gap of -2.327 eV which represents a semiconductor material which can either behave as a conductor or insulator depending on the condition. There is absorption in the range 700 nm to 1500 nm but with less intensities at the higher wavelengths. No absorption was observed in the ultraviolent range. These results imply GO has very good potential for supercapacitors application.
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