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Abstract. We have developed a machine learning-based generative model to estimate the
kernel density of the data using the Gaussian kernel and then have generated additional
samples from this distribution. This model uses scikit-learn to generate a list of particle four-
momenta from the proton-proton collisions produced at the Large Hadron Collider (LHC). We
demonstrate the ability of this approach to reproduce a set of kinematic features, that are
used for the search for new resonances decaying to Zγ, final states at the LHC. This model
is constructed to take the pre-processed Zγ events and generate sample data with accurate
statistics mimicking the original distributions and achieving better performances compared to
the standard event Monte-Carlo generators.

1. Introduction
In the modern era machine learning generative models are a widely used technology around the
world for synthetic data generation. A team of high energy physicist uses these techniques to
increase the efficiency of data analysis and event generation at Large Hadron Collider (LHC).
Variational Auto Encoders (VAE) [1, 2] and Generative Adversarial Networks (GAN) [3] are
two widely used fast simulation deep generative algorithms in HEP. These two models illustrate
the process of generating simulated events more rapidly and precisely reproducing the sample
data distribution. However, focus of GAN and VAE is to generate data mostly in image form.
These models are difficult to train and need a large amount of data for the purpose [4].

In this paper we investigate the performance of a non-deep machine learning model based
on Kernel Density Estimation (KDE) [5], which is a well-known method for density estimation.
This model, whose traditional name was the Parzen-Rosenblatt Windows method, learns the
distribution of events in a non-parametric manner. The model estimates the density of real data
distribution and generates sample data out of that distribution [6].

The largest and most potent particle accelerator and collider in the world is the LHC at
the European Organization for Nuclear Research (CERN). At the LHC, the ATLAS [7] and
CMS made the Higgs boson discovery in 2012 [8, 9]. Many experiments, including those at
the LHC, are now devoted to search for direct evidence of physics beyond the Standard Model
(SM) in the wake of this finding. The accelerators allow for a better understanding of the SM’s
limitations, which is a theoretical model developed to understand elementary particles and their



interactions [10]. Most of the experiments at the LHC depend on Monte Carlo (MC) simulator
for data generation, which is a time consuming and CPU expensive process. Machine learning
based generative models has been integrated with MC to accelerate the efficiency of generating
simulated events. The High-Luminosity Large Hadron Collider (HL-LHC) projects are aimed
to increase the luminosity in the future. As a result, it will increase the demand of machine
learning based generative models to handle the challenge.

2. Method
In this study we chose KDE for our study because it is a non-parametric methodology that
necessitates no previous assumption of a distribution function for probabilities and relies on
only one parameter, known as bandwidth, to accurately estimate the density. Usually small
tabular data sets requires simple modeling methods based on density estimation. There are
numerous density estimation methods, such as KDE [11] the Gaussian mixture model [12], and
copulas [13].

2.1. Kernel density estimation
To find the shape of the estimated density function, we generate a set of points equidistant from
each other and estimate the kernel density at each point. Kernel Density is a non-parametric
technique for determining the probability density function of a random sample (x1, x2, ..., xn)
from a distribution with unknown density function f(x). The kernel density estimation is defined
as follows:
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where h is the bandwidth parameter that enforces the smoothness of density estimation. The
only parameter that impacts the model’s accuracy is bandwidth [14, 15]. This model learns
the density of the given data and generates synthetic data based on the same distribution. To
generate synthetic data, we used the python libraries scikit-learn and NumPy, which implement
the Ball Tree or KD Tree algorithm. KDE can be implemented in any dimension, however, its
performance degrades at high dimensionality. Which is known as the curse of dimensionality.
The scikit-learn library allows cross-validation tuning of the bandwidth parameter to obtain
the best model and returns the parameter value that maximizes the log-likelihood of data.
GridSearchCV is the function we can use to accomplish this, and it requires different bandwidth
parameter values.

2.2. Dataset
The Zγ SM MC samples used in this analysis have been generated using Madgraph5 [16]
and the detector level simulation is performed using Delphes(v3) [17]. The MC-simulated
Higss Boson signal used in this study for analysis purpose. The analysis focuses around the
centre of mass of 150 GeV (132 GeV < mllγ < 168 GeV). The simulated Zγ background data
was used, Higgs-like heavy scalar decaying to Zγ (pp → H → Zγ) events, where Z → e+e−

or Z → µ+µ−. The kinematic features used in the study are Zγ invariant mass mℓℓγ , the
transverse momentum, azimuthal angle, pseudo-rapidity and energy of the leading lepton, sub-
leading lepton and photon respectively, Ptℓ1|ℓ2|γ , Φℓ1|ℓ2|γ , ηℓ1|ℓ2|γ , Eℓ1|ℓ2|γ , missing transverse

energy Emiss
T and it’s azimuthal angle ΦEmiss

T
, the number of jets Nj , the number of central jets

Ncj , ∆Rℓℓ (∆R ≡
√
(∆ηll)2 + (∆ϕll)2), Ptℓℓ/mℓℓγ , ∆Φℓℓ, and ∆Φ(Emiss

T , Zγ).



Figure 1. Plots comparing Monte Carlo (MC) and generated data from the Zγ data set based
on the best selected hyper parameter. Blue and orange plots depict MC and generated data,
respectively. The blue columns beneath the data plots show the relative difference.

3. Results
Colab, a free Jupyter notebook environment, was used to run the model, which is powered by
an NVIDIA Tesla K80 GPU. A generative model is built using the Scikit-learn and NumPy
libraries to take pre-processed Zγ data and generate data with accurate statistics that mimic
MC data samples from the ATLAS experiment. All the features of both generated and MC
data data has been compared with their corresponding local relative difference in, Figure 1. The
results shows that generated model works reasonably good to reproduce sample similar to the
real data. The features correlation heat-map plots for Monte Carlo, generated data, and the
correlation difference between Zγ data sets is visualised in, Figure 2.

4. Conclusion
The study presented in this paper describe the performance of Kernel Density Estimation
generated synthetic data. The results show that our model generates synthetic data reasonably
well. Further efforts are being made to improve the model’s consistency and correlation.
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